ﻻ يوجد ملخص باللغة العربية
We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14-175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.
The radio light curves of novae rise and fall over the course of months to years, allowing for detailed observations of the evolution of the nova shell. However, the main parameter determined by radio models of nova explosions - the mass of the eject
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstella
The importance of shocks in nova explosions has been highlighted by Fermis discovery of gamma-ray producing novae. Over three years of multi-band VLA radio observations of the 2010 nova V1723 Aql show that shocks between fast and slow flows within th
We report on our Chandra and RXTE observations of the bright old nova, V603 Aql, performed in 2001 April, supplemented by our analysis of archival X-ray data on this object. We find that the RXTE data are contaminated by the Galactic Ridge X-ray emis
Low- and medium resolution spectra of the fast nova, Nova (V1494) Aql 1999 No.2 obtained approximately 6, 7, 19 and 28 days after the maximum brightness are presented and discussed. The spectrum covering the whole optical range at day 6 shows the pri