ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions

69   0   0.0 ( 0 )
 نشر من قبل Jordi Jose
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures about 100 - 400 MK. During these events, about 10-3 - 10-7 Msun, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the large concentrations of metals spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. Three-dimensional simulations of mixing at the core-envelope interface during nova outbursts have been performed with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We show that the presence of an ONe-rich substrate, as in neon novae, yields larger metallicity enhancements in the ejecta, compared to CO,rich substrates (i.e., non-neon novae). A number of requirements and constraints for such 3-D simulations (e.g., minimum resolution, size of the computational domain) are also outlined.

قيم البحث

اقرأ أيضاً

A review of the present status of nova modeling is made, with a special emphasis on some specific aspects. What are the main nucleosynthetic products of the explosion and how do they depend on the white dwarf properties (e.g. mass, chemical compositi on: CO or ONe)? Whats the imprint of nova nucleosynthesis on meteoritic presolar grains? How can gamma rays, if observed with present or future instruments onboard satellites, constrain nova models through their nucleosynthesis? What have we learned about the turnoff of classical novae from observation with past and present X-ray observatories? And last but not least, what are the most critical issues concerning nova modeling (e.g. ejected masses, mixing mechanism between core and envelope)?
114 - C. E. Fields , S. M. Couch 2021
Non-spherical structure in massive stars at the point of iron core collapse can have a qualitative impact on the properties of the ensuing core-collapse supernova explosions and the multi-messenger signals they produce. Strong perturbations can aid s uccessful explosions by strengthening turbulence in the post-shock region. Here, we report on a set of $4pi$ 3D hydrodynamic simulations of O- and Si-shell burning in massive star models of varied initial masses using MESA and the FLASH simulation framework. We evolve four separate 3D models for roughly the final ten minutes prior to, and including, iron core collapse. We consider initial 1D MESA models with masses of 14-, 20-, and 25 $M_{odot}$ to survey a range of O/Si shell density and compositional configurations. We characterize the convective shells in our 3D models and compare them to the corresponding 1D models. In general, we find that the angle-average convective speeds in our 3D simulations near collapse are three to four times larger than the convective speeds predicted by MESA at the same epoch for our chosen mixing length parameter of $alpha_{rm{MLT}}=1.5$. In three of our simulations, we observe significant power in the spherical harmonic decomposition of the radial velocity field at harmonic indices of $ell=1-3$ near collapse. Our results suggest that large-scale modes are common in massive stars near collapse and should be considered a key aspect of pre-supernova progenitor models.
Cataclysmic Variables (CVs) and Symbiotic Binaries are close (or not so close) binary star systems which contain both a white dwarf (WD) primary and a larger cooler secondary star that typically fills its Roche Lobe. The cooler star is losing mass th rough the inner Lagrangian point of the binary and a fraction of this material is accreted by the WD. Here we report on our hydrodynamic studies of the thermonuclear runaway (TNR) in the accreted material that ends in a Classical Nova explosion. We have followed the evolution of the TNRs on both carbon-oxygen (CO) and oxygen-neon (ONe) WDs. We report on 3 studies in this paper. First, simulations in which we accrete only solar matter using NOVA (our 1-D, fully implicit, hydro code). Second, we use MESA for similar studies in which we accrete only Solar matter and compare the results. Third, we accrete solar matter until the TNR is ongoing and then switch the composition in the accreted layers to a mixed composition: either 25% WD and 75% solar or 50% WD and 50% Solar matter. We find that the amount of accreted material is inversely proportional to the initial 12C abundance (as expected). Thus, accreting solar matter results in a larger amount of accreted material to fuel the outburst; much larger than in earlier studies where a mixed composition was assumed from the beginning of the simulation. Our most important result is that all these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit.
The helioseismic observations of the internal rotation profile of the Sun raise questions about the two-dimensional (2D) nature of the transport of angular momentum in stars. Here we derive a convective prescription for axisymmetric (2D) stellar evol ution models. We describe the small scale motions by a spectrum of unstable linear modes in a Boussinesq fluid. Our saturation prescription makes use of the angular dependence of the linear dispersion relation to estimate the anisotropy of convective velocities. We are then able to provide closed form expressions for the thermal and angular momentum fluxes with only one free parameter, the mixing length. We illustrate our prescription for slow rotation, to first order in the rotation rate. In this limit, the thermodynamical variables are spherically symetric, while the angular momentum depends both on radius and latitude. We obtain a closed set of equations for stellar evolution, with a self-consistent description for the transport of angular momentum in convective regions. We derive the linear coefficients which link the angular momentum flux to the rotation rate ($Lambda$- effect) and its gradient ($alpha$-effect). We compare our results to former relevant numerical work.
Radiative turbulent mixing layers should be ubiquitous in multi-phase gas with shear flow. They are a potentially attractive explanation for the high ions such as OVI seen in high velocity clouds and the circumgalactic medium (CGM) of galaxies. We pe rform 3D MHD simulations with non-equilibrium (NEI) and photoionization modeling, with an eye towards testing simple analytic models. Even purely hydrodynamic collisional ionization equilibrium (CIE) calculations have column densities much lower than observations. Characteristic inflow and turbulent velocities are much less than the shear velocity, and the layer width $h propto t_mathrm{cool}^{1/2}$ rather than $h propto t_mathrm{cool}$. Column densities are not independent of density or metallicity as analytic scalings predict, and show surprisingly weak dependence on shear velocity and density contrast. Radiative cooling, rather than Kelvin-Helmholtz instability, appears paramount in determining the saturated state. Low pressure due to fast cooling both seeds turbulence and sets the entrainment rate of hot gas, whose enthalpy flux, along with turbulent dissipation, energizes the layer. Regardless of initial geometry, magnetic fields are amplified and stabilize the mixing layer via magnetic tension, producing almost laminar flow and depressing column densities. NEI effects can boost column densities by factors of a few. Suppression of cooling by NEI or photoionization can in principle also increase OVI column densities, but in practice is unimportant for CGM conditions. To explain observations, sightlines must pierce hundreds or thousands of mixing layers, which may be plausible if the CGM exists as a `fog of tiny cloudlets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا