ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of visible and dark matter components of spiral galaxies at z = 0.9

105   0   0.0 ( 0 )
 نشر من قبل Antti Tamm
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct self-consistent light and mass distribution models for 4 distant spiral galaxies. The models include a bulge, a disk and an isothermal dark matter. We find the luminosity profiles to have much steeper cut-off than that of a simple exponential disk. We apply k-corrections and derive rest-frame B-band mass-to-light ratios of the visible components and the central densities of the dark halos; we discover no significant evolution with redshift of these parameters.


قيم البحث

اقرأ أيضاً

We construct a structural model of the Andromeda Galaxy, simultaneously corresponding to observed photometrical and kinematical data and chemical abundances. In this paper we present the observed surface brightness, colour and metallicity distributio ns, and compare them to the model galaxy. In Paper II (Tempel, Tamm & Tenjes 2007) we present similar data for the kinematics, and derive the mass distribution of the galaxy. On the basis of U, B, V, R, I and L luminosity distributions, we construct the model galaxy as a superposition of four axially symmetric stellar components: a bulge, a disc, an inner halo and an extended diffuse halo. By using far-infrared imaging data of M31 and a thin dust disc assumption, we derive dust-free surface brightness and colour distributions. We find the total absorption corrected luminosity of M31 to be L_B = (3.3+/-0.7)x10^10 L_sun, corresponding to an absolute luminosity M_B = -20.8+/-0.2 mag. Of the total luminosity, 41% (0.57 mag) is obscured from us by the dust inside M31. Using chemical evolution models, we calculate mass-to-light ratios of the components, correspoding to the colour indices and metallicities. We find the total intrinsic mass-to-light ratio of the visible matter to be M/L_B=3.1-5.8 M_sun/L_sun and the total mass of visible matter M_vis =(10-19)x10^10 M_sun. The use of the model parameters for a dynamical analysis and for determining dark matter distribution is presented in Paper II.
Deep observations of galaxies reveal faint extended stellar components (hereafter ESCs) of streams, shells, and halos. These are a natural prediction of hierarchical galaxy formation, as accreted satellite galaxies are tidally disrupted by their host . We investigate whether or not global properties of the ESC could be used to test of dark matter, reasoning that they should be sensitive to the abundance of low-mass satellites, and therefore the underlying dark matter model. Using cosmological simulations of galaxy formation in the favoured Cold Dark Matter (CDM) and Warm Dark Matter (WDM) models ($m_{rm WDM}$=0.5,1,2 keV/$c^2$), which suppress the abundance of low-mass satellites, we find that the kinematics and orbital structure of the ESC is consistent across models. However, we find striking differences in its spatial structure, as anticipated -- a factor of $sim$10 drop in spherically averaged mass density between $sim$10% and $sim$75% of the virial radius in the more extreme WDM runs ($m_{rm WDM}$=0.5, 1 keV/$c^2$) relative to the CDM run. These differences are consistent with the mass assembly histories of the different components, and are present across redshifts. However, even the least discrepant of the WDM models is incompatible with current observational limits on $m_{rm WDM}$. Importantly, the differences we observe when varying the underlying dark matter are comparable to the galaxy-to-galaxy variation we expect within a fixed dark matter model. This suggests that it will be challenging to place limits on dark matter using only the unresolved spatial structure of the the ESC.
We present the HI data for 5 spiral galaxies that, along with their Halpha rotation curves, are used to derive the distribution of dark matter within these objects. A new method for extracting rotation curves from HI data cubes is presented; this tak es into account the existence of a warp and minimises projection effects. The rotation curves obtained are tested by taking them as input to construct model data cubes that are compared to the observed ones: the agreement is excellent. On the contrary, the model data cubes built using rotation curves obtained with standard methods, such as the first-moment analysis, fail the test. The HI rotation curves agree well with the Halpha data, where they coexist. Moreover, the combined Halpha + HI rotation curves are smooth, symmetric and extended to large radii. The rotation curves are decomposed into stellar, gaseous and dark matter contributions and the inferred density distribution is compared to various mass distributions: dark haloes with a central density core, $Lambda$ Cold Dark Matter ($Lambda$CDM) haloes (NFW, Moore profiles), HI scaling and MOND. The observations point to haloes with constant density cores of size $r_{core} sim r_{opt}$ and central densities scaling approximately as $rho_0 propto r_{core}^{-2/3}$. $Lambda$CDM models (which predict a central cusp in the density profile) are in clear conflict with the data. HI scaling and MOND cannot account for the observed kinematics: we find some counter-examples.
The Cl1604 supercluster at z=0.9 is one of a small handful of such structures discovered in the high redshift universe, and is the first target observed as part of the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey. To date, Cl1604 is the largest structure mapped at z~1, with the most constituent clusters and the largest number of spectroscopically confirmed member galaxies. In this paper we present the results of a spectroscopic campaign to create a three-dimensional map of Cl1604 and to understand the contamination by fore- and background large scale structures. Combining new Deep Imaging Multi-object Spectrograph observations with previous data yields redshifts for 1,383 extragalactic objects in a ~ 0.08 sq. deg region, 449 of which are supercluster members. We examine the complex three dimensional structure of Cl1604, providing velocity dispersions for eight of the member clusters and groups. Our extensive spectroscopic dataset is used to examine potential biases in cluster velocity dispersion measurements in the presence of overlapping structures and filaments. We also discuss other structures found along the line-of-sight, including a filament at z=0.6 and two serendipitously discovered clusters/groups at z~1.2.
Strong foreground absorption features from singly-ionized Magnesium (Mg II) are commonly observed in the spectra of quasars and are presumed to probe a wide range of galactic environments. To date, measurements of the average dark matter halo masses of intervening Mg II absorbers by way of large-scale cross-correlations with luminous galaxies have been limited to z<0.7. In this work we cross-correlate 21 strong (W{lambda}2796>0.6 {deg}A) Mg II absorption systems detected in quasar spectra from the Sloan Digital Sky Survey Data Release 7 with ~32,000 spectroscopically confirmed galaxies at 0.7<z<1.45 from the DEEP2 galaxy redshift survey. We measure dark matter (DM) halo biases of b_G=1.44pm0.02 and b_A=1.49pm0.45 for the DEEP2 galaxies and Mg II absorbers, respectively, indicating that their clustering amplitudes are roughly consistent. Haloes with the bias we measure for the Mg II absorbers have a corresponding mass of 1.8(+4.2/-1.6) times 10^12h-1M_sun, although the actual mean absorber halo mass will depend on the precise distribution of absorbers within DM haloes. This mass estimate is consistent with observations at z=0.6, suggesting that the halo masses of typical Mg II absorbers do not significantly evolve from z~1. We additionally measure the average W{lambda}2796>0.6 AA gas covering fraction to be f =0.5 within 60 h-1kpc around the DEEP2 galaxies, and we find an absence of coincident strong Mg II absorption beyond a projected separation of ~40 h-1kpc. Although the star-forming z>1 DEEP2 galaxies are known to exhibit ubiquitous blueshifted Mg II absorption, we find no direct evidence in our small sample linking W{lambda}2796>0.6 AA absorbers to galaxies with ongoing star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا