ترغب بنشر مسار تعليمي؟ اضغط هنا

The Dark Matter Haloes and Host Galaxies of MgII Absorbers at z~1

407   0   0.0 ( 0 )
 نشر من قبل Britt Lundgren
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strong foreground absorption features from singly-ionized Magnesium (Mg II) are commonly observed in the spectra of quasars and are presumed to probe a wide range of galactic environments. To date, measurements of the average dark matter halo masses of intervening Mg II absorbers by way of large-scale cross-correlations with luminous galaxies have been limited to z<0.7. In this work we cross-correlate 21 strong (W{lambda}2796>0.6 {deg}A) Mg II absorption systems detected in quasar spectra from the Sloan Digital Sky Survey Data Release 7 with ~32,000 spectroscopically confirmed galaxies at 0.7<z<1.45 from the DEEP2 galaxy redshift survey. We measure dark matter (DM) halo biases of b_G=1.44pm0.02 and b_A=1.49pm0.45 for the DEEP2 galaxies and Mg II absorbers, respectively, indicating that their clustering amplitudes are roughly consistent. Haloes with the bias we measure for the Mg II absorbers have a corresponding mass of 1.8(+4.2/-1.6) times 10^12h-1M_sun, although the actual mean absorber halo mass will depend on the precise distribution of absorbers within DM haloes. This mass estimate is consistent with observations at z=0.6, suggesting that the halo masses of typical Mg II absorbers do not significantly evolve from z~1. We additionally measure the average W{lambda}2796>0.6 AA gas covering fraction to be f =0.5 within 60 h-1kpc around the DEEP2 galaxies, and we find an absence of coincident strong Mg II absorption beyond a projected separation of ~40 h-1kpc. Although the star-forming z>1 DEEP2 galaxies are known to exhibit ubiquitous blueshifted Mg II absorption, we find no direct evidence in our small sample linking W{lambda}2796>0.6 AA absorbers to galaxies with ongoing star formation.



قيم البحث

اقرأ أيضاً

Taking advantage of the ultra-deep near-infrared imaging obtained with the Hubble Space Telescope on the Hubble Ultra Deep Field, we detect and explore for the first time the properties of the stellar haloes of two Milky Way-like galaxies at z~1. We find that the structural properties of those haloes (size and shape) are similar to the ones found in the local universe. However, these high-z stellar haloes are approximately three magnitudes brighter and exhibit bluer colours ((g-r)<0.3 mag) than their local counterparts. The stellar populations of z~1 stellar haloes are compatible with having ages <1 Gyr. This implies that the stars in those haloes were formed basically at 1<z<2. This result matches very well the theoretical predictions that locate most of the formation of the stellar haloes at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.
149 - Aaron A. Dutton 2010
Using estimates of dark halo masses from satellite kinematics, weak gravitational lensing, and halo abundance matching, combined with the Tully-Fisher and Faber-Jackson relations, we derive the mean relation between the optical, V_opt, and virial, V_ 200, circular velocities of early- and late-type galaxies at redshift z~0. For late-type galaxies V_opt ~ V_200 over the velocity range V_opt=90-260 km/s, and is consistent with V_opt = V_maxh (the maximum circular velocity of NFW dark matter haloes in the concordance LCDM cosmology). However, for early-type galaxies V_opt e V_200, with the exception of early-type galaxies with V_opt simeq 350 km/s. This is inconsistent with early-type galaxies being, in general, globally isothermal. For low mass (V_opt < 250 km/s) early-types V_opt > V_maxh, indicating that baryons have modified the potential well, while high mass (V_opt > 400 km/s) early-types have V_opt < V_maxh. Folding in measurements of the black hole mass - velocity dispersion relation, our results imply that the supermassive black hole - halo mass relation has a logarithmic slope which varies from ~1.4 at halo masses of ~10^{12} Msun/h to ~0.65 at halo masses of 10^{13.5} Msun/h. The values of V_opt/V_200 we infer for the Milky Way and M31 are lower than the values currently favored by direct observations and dynamical models. This offset is due to the fact that the Milky Way and M31 have higher V_opt and lower V_200 compared to typical late-type galaxies of the same stellar masses. We show that current high resolution cosmological hydrodynamical simulations are unable to form galaxies which simultaneously reproduce both the V_opt/V_200 ratio and the V_opt-M_star (Tully-Fisher/Faber-Jackson) relation.
We report 4 new detections of 21-cm absorption from a systematic search of 21-cm absorption in a sample of 17 strong (Wr(MgII 2796)>1A) intervening MgII absorbers at 0.5<z<1.5. We also present 20-cm milliarcsecond scale maps of 40 quasars having 42 i ntervening strong MgII absorbers for which we have searched for 21-cm absorption. Combining 21-cm absorption measurements for 50 strong MgII systems from our surveys with the measurements from literature, we obtain a sample of 85 strong MgII absorbers at 0.5<z<1 and 1.1<z<1.5. We present detailed analysis of this sample, taking into account the effect of the varying 21-cm optical depth sensitivity and covering factor associated with the different quasar sight lines. We find that the 21-cm detection rate is higher towards the quasars with flat or inverted spectral index at cm wavelengths. About 70% of 21-cm detections are towards the quasars with linear size, LS<100 pc. The 21-cm absorption lines having velocity widths, DeltaV>100 km/s are mainly seen towards the quasars with extended radio morphology at arcsecond scales. However, we do not find any correlation between the integrated 21-cm optical depth or DeltaV with the LS measured from the milliarcsecond scale images. All this can be understood if the absorbing gas is patchy with a typical correlation length of ~30-100 pc. We show that within the measurement uncertainty, the 21-cm detection rate in strong MgII systems is constant over 0.5<z<1.5, i.e., over ~30% of the total age of universe. We show that the detection rate can be underestimated by up to a factor 2 if 21-cm optical depths are not corrected for the partial coverage estimated using milliarcsecond scale maps. Since stellar feedback processes are expected to diminish the filling factor of cold neutral medium over 0.5<z<1, this lack of evolution in the 21-cm detection rate in strong MgII absorbers is intriguing. [abridged]
Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution around galaxies. The depth and sky coverage of the CFHT Legacy Survey yield statistically significant galaxy halo mass measurements over a much wider range of stellar masses ($10^{8.75}$ to $10^{11.3} M_{odot}$) and redshifts ($0.2 < z < 0.8$) than previous weak lensing studies. At redshift $z sim 0.5$, the stellar-to-halo mass ratio (SHMR) reaches a maximum of $4.0pm0.2$ percent as a function of halo mass at $sim 10^{12.25} M_{odot}$. We find, for the first time from weak lensing alone, evidence for significant evolution in the SHMR: the peak ratio falls as a function of cosmic time from $4.5 pm 0.3$ percent at $z sim 0.7$ to $3.4 pm 0.2$ percent at $z sim 0.3$, and shifts to lower stellar mass haloes. These evolutionary trends are dominated by red galaxies, and are consistent with a model in which the stellar mass above which star formation is quenched downsizes with cosmic time. In contrast, the SHMR of blue, star-forming galaxies is well-fit by a power law that does not evolve with time. This suggests that blue galaxies form stars at a rate that is balanced with their dark matter accretion in such a way that they evolve along the SHMR locus. The redshift dependence of the SHMR can be used to constrain the evolution of the galaxy population over cosmic time.
169 - Jesus Zavala 2019
The development of methods and algorithms to solve the $N$-body problem for classical, collisionless, non-relativistic particles has made it possible to follow the growth and evolution of cosmic dark matter structures over most of the Universes histo ry. In the best studied case $-$ the cold dark matter or CDM model $-$ the dark matter is assumed to consist of elementary particles that had negligible thermal velocities at early times. Progress over the past three decades has led to a nearly complete description of the assembly, structure and spatial distribution of dark matter haloes, and their substructure in this model, over almost the entire mass range of astronomical objects. On scales of galaxies and above, predictions from this standard CDM model have been shown to provide a remarkably good match to a wide variety of astronomical data over a large range of epochs, from the temperature structure of the cosmic background radiation to the large-scale distribution of galaxies. The frontier in this field has shifted to the relatively unexplored subgalactic scales, the domain of the central regions of massive haloes, and that of low-mass haloes and subhaloes, where potentially fundamental questions remain. Answering them may require: (i) the effect of known but uncertain baryonic processes (involving gas and stars), and/or (ii) alternative models with new dark matter physics. Here we present a review of the field, focusing on our current understanding of dark matter structure from $N$-body simulations and on the challenges ahead.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا