ﻻ يوجد ملخص باللغة العربية
We construct a structural model of the Andromeda Galaxy, simultaneously corresponding to observed photometrical and kinematical data and chemical abundances. In this paper we present the observed surface brightness, colour and metallicity distributions, and compare them to the model galaxy. In Paper II (Tempel, Tamm & Tenjes 2007) we present similar data for the kinematics, and derive the mass distribution of the galaxy. On the basis of U, B, V, R, I and L luminosity distributions, we construct the model galaxy as a superposition of four axially symmetric stellar components: a bulge, a disc, an inner halo and an extended diffuse halo. By using far-infrared imaging data of M31 and a thin dust disc assumption, we derive dust-free surface brightness and colour distributions. We find the total absorption corrected luminosity of M31 to be L_B = (3.3+/-0.7)x10^10 L_sun, corresponding to an absolute luminosity M_B = -20.8+/-0.2 mag. Of the total luminosity, 41% (0.57 mag) is obscured from us by the dust inside M31. Using chemical evolution models, we calculate mass-to-light ratios of the components, correspoding to the colour indices and metallicities. We find the total intrinsic mass-to-light ratio of the visible matter to be M/L_B=3.1-5.8 M_sun/L_sun and the total mass of visible matter M_vis =(10-19)x10^10 M_sun. The use of the model parameters for a dynamical analysis and for determining dark matter distribution is presented in Paper II.
Stellar mass distribution in M31 is estimated using optical and infrared imaging data. Combining the derived stellar mass model with various kinematical data, properties of the DM halo of the galaxy are constrained. SDSS observations through the ug
We construct self-consistent light and mass distribution models for 4 distant spiral galaxies. The models include a bulge, a disk and an isothermal dark matter. We find the luminosity profiles to have much steeper cut-off than that of a simple expone
Deep observations of galaxies reveal faint extended stellar components (hereafter ESCs) of streams, shells, and halos. These are a natural prediction of hierarchical galaxy formation, as accreted satellite galaxies are tidally disrupted by their host
We present WeCAPP, a long term monitoring project searching for microlensing events towards M 31. Since 1997 the bulge of M 31 was monitored in two different wavebands with the Wendelstein 0.8 m telescope. In 1999 we extended our observations to the
In the present paper we derive the density distribution of dark matter (DM) in a well-observed nearby disc galaxy, the Andromeda galaxy. From photometrical and chemical evolution models constructed in the first part of the study (Tamm, Tempel & Tenje