ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of an Extended Accretion Disk Corona in the Hercules X-1 Low State: Moderate Optical Depth, Precise Density Determination, and Verification of CNO Abundances

269   0   0.0 ( 0 )
 نشر من قبل Mario A. Jimenez-Garate
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify an accretion disk atmosphere and corona from the high resolution X-ray spectrum of Hercules X-1, and we determine its detailed physical properties. More than two dozen recombination emission lines (from Fe XXVI at 1.78 A to N VI at 29.08 A) and Fe K-alpha, K-beta fluorescence lines were detected in a 50 ks observation with the Chandra High-Energy Transmission Grating Spectrometer (HETGS). They allow us to measure the density, temperature, spatial distribution, elemental composition, and kinematics of the plasma. We exclude HZ Her as the source of the recombination emission. We compare accretion disk model atmospheres with the observed spectrum in order to constrain the stratification of density and ionization, disk atmosphere area, elemental composition, and energetics. The atmospheric spectrum observed during the low state is photoionized by the main-on X-ray continuum, indicating that the disk is observed edge-on during the low state. We infer the mean number of scatterings N of Ly-alpha and Ly-beta line photons from H-like ions. We derive N < 69 for O VIII Ly_alpha_1, which rules out the presence of a mechanism modeled by Sako (2003) to enhance N VII emission via a line overlap with O VIII. The line optical depth diagnostics are consistent with a flattened atmosphere. Our spectral analysis, the disk atmosphere model, and the presence of intense N VII and N VI lines (plus N V in the UV), confirm the over-abundance of nitrogen relative to other metals, which was shown to be indicative of CNO cycle processing in a massive progenitor.

قيم البحث

اقرأ أيضاً

Hercules X-1 is one of the best studied highly magnetised neutron star X-ray binaries with a wealth of archival data. We present the discovery of an ionised wind in its X-ray spectrum when the source is in the high state. The wind detection is statis tically significant in most of the XMM-Newton observations, with velocities ranging from 200 to 1000 km/s. Observed features in the iron K band can be explained by both wind absorption or by a forest of iron emission lines. However, we also detect nitrogen, oxygen and neon absorption lines at the same systematic velocity in the high-resolution RGS grating spectra. The wind must be launched from the accretion disc, and could be the progenitor of the UV absorption features observed at comparable velocities, but the latter likely originate at significantly larger distances from the compact object. We find strong correlations between the ionisation level of the outflowing material and the ionising luminosity as well as the super-orbital phase. If the luminosity is driving the correlation, the wind could be launched by a combination of Compton heating and radiation pressure. If instead the super-orbital phase is the driver for the variations, the observations are likely scanning the wind at different heights above the warped accretion disc. If this is the case, we can estimate the wind mass outflow rate, corrected for the limited launching solid angle, to be roughly 70% of the mass accretion rate.
We observed at very high spectral resolution the prototype Z-source Cyg x-2 twice along its entire X-ray spectral variation pattern. In this preliminary analysis we find an extended accretion disk corona exhibiting Lyman alpha emissions from various H-like ions, as well as emissions from He-like ions of Fe and Al, and Li-like ions of Fe. The brightest lines show a range of line broadening: H-like lines are very broad with Doppler velocities between 1100 and 2700 km/s, while some others are narrower with widths of a few hundred km/s. Line diagnostics allow us for the first time to determine coronal parameters. The line properties are consistent with a stationary, extended up to 10^10 cm, dense (1x10^15 cm^-3), and hot (log xi > 3; T > 10^6 K) accretion disk corona. We find ongoing heating of the corona along the Z-track and determine that heating luminosities change from about 0.4 L_Edd on the horizontal to about 1.4 L_Edd on the flaring branch.
We analyze the high-resolution X-ray spectrum of Hercules X-1, an intermediate-mass X-ray binary, which was observed with the XMM-Newton Reflection Grating Spectrometer. We measure the elemental abundance ratios by use of spectral models, and we dete ct material processed through the CNO-cycle. The CNO abundances, and in particular the ratio N/O > 4.0 times solar, provide stringent constraints on the evolution of the binary system. The low and short-on flux states of Her X-1 exhibit narrow line emission from C VI, N VI, N VII, O VII, O VIII, Ne IX, and Ne X ions. The spectra show signatures of photoionization. We measure the electron temperature, quantify photoexcitation in the He alpha lines, and set limits on the location and density of the gas. The recombination lines may originate in the accretion disk atmosphere and corona, or on the X-ray illuminated face of the mass donor (HZ Her). The spectral variation over the course of the 35 d period provides additional evidence for the precession of the disk. During the main-on state, the narrow line emission is absent, but we detect excesses of emission at ~10--15 A, and also near the O VII intercombination line wavelength.
272 - T. Oosterbroek 1999
We present results of a 5.7 day duration BeppoSAX observation of the short-on state of Her X-1 and a short observation during the decline of the preceding main-on state. The 0.1-10 keV spectra can be fit with a power-law and blackbody model together with Fe emission features at 1.0 keV and 6.5 keV. During the later stages of the short-on state there are long intervals when the absorption is $approxgt$$5 times 10^{22}$ atom cm$^{-2}$. These intervals become longer and occur ~0.3 day earlier in each orbital cycle as the short-on state progresses. During the intervals of high absorption the 0.1 keV blackbody is still clearly detected. This may indicate the presence of separate scattered and absorbed spectral components, although other explanations such as partial covering or a partially ionized absorber cannot be excluded. During the rest of the short-on state the ratio of flux in the blackbody compared to the power-law is consistent with that in the main-on state. This supports the view that much of the 35 day modulation is caused by an energy independent process, such as electron scattering. The discovery of strong absorption late in the short-on state is consistent with the predictions of the warped disk model (Petterson 1977, see also Schandl & Meyer 1994) where the end of the short-on state is caused by the accretion disk moving into the line of sight to the neutron star. The pulse phase difference between the blackbody and the power-law maxima is 250 +/- 20 degrees in both observations (separated by 0.43 of a 35 day cycle). This constant phase difference is consistent with the blackbody originating at the inner edge of a precessing accretion disk.
We use complementary optical spectroscopy methods to directly measure the lowest crystal-field energies of the rare-earth quantum magnet LiY$_{1-x}$Ho$_{x}$F$_{4}$, including their hyperfine splittings, with more than 10 times higher resolution than previous work. We are able to observe energy level splittings due to the $^6mathrm{Li}$ and $^7mathrm{Li}$ isotopes, as well as non-equidistantly spaced hyperfine transitions originating from dipolar and quadrupolar hyperfine interactions. We provide refined crystal field parameters and extract the dipolar and quadrupolar hyperfine constants ${A_J=0.02703pm0.00003}$ $textrm{cm}^{-1}$ and ${B= 0.04 pm0.01}$ $textrm{cm}^{-1}$, respectively. Thereupon we determine all crystal-field energy levels and magnetic moments of the $^5I_8$ ground state manifold, including the (non-linear) hyperfine corrections. The latter match the measurement-based estimates. The scale of the non-linear hyperfine corrections sets an upper bound for the inhomogeneous line widths that would still allow for unique addressing of a selected hyperfine transition. e.g. for quantum information applications. Additionally, we establish the far-infrared, low-temperature refractive index of LiY$_{1-x}$Ho$_{x}$F$_{4}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا