ترغب بنشر مسار تعليمي؟ اضغط هنا

Heating in an Extended Accretion Disk Corona along the Z-Pattern in Cyg X-2

42   0   0.0 ( 0 )
 نشر من قبل Norbert S. Schulz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observed at very high spectral resolution the prototype Z-source Cyg x-2 twice along its entire X-ray spectral variation pattern. In this preliminary analysis we find an extended accretion disk corona exhibiting Lyman alpha emissions from various H-like ions, as well as emissions from He-like ions of Fe and Al, and Li-like ions of Fe. The brightest lines show a range of line broadening: H-like lines are very broad with Doppler velocities between 1100 and 2700 km/s, while some others are narrower with widths of a few hundred km/s. Line diagnostics allow us for the first time to determine coronal parameters. The line properties are consistent with a stationary, extended up to 10^10 cm, dense (1x10^15 cm^-3), and hot (log xi > 3; T > 10^6 K) accretion disk corona. We find ongoing heating of the corona along the Z-track and determine that heating luminosities change from about 0.4 L_Edd on the horizontal to about 1.4 L_Edd on the flaring branch.

قيم البحث

اقرأ أيضاً

We identify an accretion disk atmosphere and corona from the high resolution X-ray spectrum of Hercules X-1, and we determine its detailed physical properties. More than two dozen recombination emission lines (from Fe XXVI at 1.78 A to N VI at 29.08 A) and Fe K-alpha, K-beta fluorescence lines were detected in a 50 ks observation with the Chandra High-Energy Transmission Grating Spectrometer (HETGS). They allow us to measure the density, temperature, spatial distribution, elemental composition, and kinematics of the plasma. We exclude HZ Her as the source of the recombination emission. We compare accretion disk model atmospheres with the observed spectrum in order to constrain the stratification of density and ionization, disk atmosphere area, elemental composition, and energetics. The atmospheric spectrum observed during the low state is photoionized by the main-on X-ray continuum, indicating that the disk is observed edge-on during the low state. We infer the mean number of scatterings N of Ly-alpha and Ly-beta line photons from H-like ions. We derive N < 69 for O VIII Ly_alpha_1, which rules out the presence of a mechanism modeled by Sako (2003) to enhance N VII emission via a line overlap with O VIII. The line optical depth diagnostics are consistent with a flattened atmosphere. Our spectral analysis, the disk atmosphere model, and the presence of intense N VII and N VI lines (plus N V in the UV), confirm the over-abundance of nitrogen relative to other metals, which was shown to be indicative of CNO cycle processing in a massive progenitor.
290 - Y.J. Lei , J.L. Qu , L.M. Song 2008
We report the detections of the anti-correlated soft and hard X-rays, and the time lags of $sim$ hecto-second from the neutron star low-mass X-ray binary Cyg X-2, a well-known Z-type luminous source. Both the anti-correlation and the positive correla tion were detected during the low-intensity states, while only the latter showed up during high-intensity states. Comparing with the lower part of normal branch and flaring branch, more observations located on the horizontal and the upper normal branches are accompanied with the anti-correlation, implying the occurrence of the anti-correlation under circumstance of a low mass accretion rate. So far the anti-correlated hard lag of thousand-second timescale are only reported from the Galactic black hole candidates in their hard states. Here we provide the first evidence that a similar feature can also establish in a neutron-star system like Cyg X-2. Finally, the possible origins of the observed time lags are discussed under the current LMXB models.
GX 301-2 provides a rare opportunity to study both disk and wind accretion in a same target. We report Insight-HXMT observations of the spin-up event of GX 301-2 happened in 2019 and compare with those of wind-fed state. The pulse profiles of the ini tial rapid spin-up period are dominated by one main peak, while those of the later slow spin-up period are composed of two similar peaks, as those of wind-fed state. These behaviors are confirmed by Fermi/GBM data, which also show that during the rapid spin-up period, the main peak increases with luminosity up to $8times10^{37}$ erg s$^{-1}$, but the faint peak keeps almost constant. The absorption column densities during the spin-up period are $sim1.5times10^{23}$ cm$^{-2}$, much less than those of wind-fed state at similar luminosity ($sim9times10^{23}$ cm$^{-2}$), supporting the scenario that most of material is condensed into a disk during the spin-up period. We discuss possible differences between disk and wind accretion that may explain the observed different trend of pulse profiles.
130 - G. Hebrard 2005
We present a study of the deuterium abundance along the extended sight line (2.7kpc) toward HD 90087 with FUSE. Both in terms of distance and column densities, HD 90087 has the longest and densest sight line observed in the Galactic disk for which a deuterium abundance has been measured from UV absorption lines. Because many interstellar clouds are probed along this sight line, possible variations in the properties of individual clouds should be averaged out. This would yield a deuterium abundance which is characteristic of the interstellar medium on scales larger than the Local Bubble. We report D/O=(1.7+/-0.7)e-2 and D/H=(9.8+/-3.8)e-6 (2 sigma). Our new results confirm that the gas-phase deuterium abundance in the distant interstellar medium is significantly lower than the one measured within the Local Bubble. We supplement our study with a revision of the oxygen abundance toward the moderately distant star Feige 110 (~200 pc). Excluding saturated lines from the fits of the FUSE spectra is critical; this led us to derive an OI column density about two times larger than the one previously reported for Feige 110. The corresponding updated D/O ratio on this sight line is D/O=(2.6+/-1.0)e-2 (2 sigma), which is lower than the one measured within the Local Bubble. The dataset available now outside the Local Bubble shows a contrast between the constancy of D/O and the variability of D/H. As oxygen is considered to be a good proxy for hydrogen within the interstellar medium, this discrepancy is puzzling. (abstract abridged)
196 - P. Reig 2021
The models that seek to explain the reflection spectrum in black hole binaries usually invoke a point-like primary source of hard X-rays. This source illuminates the accretion disk and gives rise to the discrete (lines) and continuum-reflected compon ents. The main goal of this work is to investigate whether the extended, mildly relativistic jet that is present in black hole binaries in the hard and hard-intermediate states is the hard X-ray source that illuminates the accretion disk. We use a Monte Carlo code that simulates the process of inverse Compton scattering in a mildly relativistic jet. Blackbody photons from the thin accretion disk are injected at the base of the jet and interact with the energetic electrons that move outward. Despite the fact that the jet moves away from the disk at a mildly relativistic speed, we find that approximately $15-20$% of the input soft photons are scattered back toward the accretion disk. The vast majority of the Comptonized, back-scattered photons escape very close to the black hole ($hlesssim 6 r_g$, where $r_g$ is the gravitational radius), but a non-negligible amount escape at a wide range of heights. At high heights, $hsim 500-2000,r_g$, the distribution falls off rapidly. The high-height cutoff strongly depends on the width of the jet at its base and is almost insensitive to the optical depth. The disk illumination spectrum is softer than the direct jet spectrum of the radiation that escapes in directions that do not encounter the disk. We conclude that an extended jet is an excellent candidate source of hard photons in reflection models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا