ﻻ يوجد ملخص باللغة العربية
We use complementary optical spectroscopy methods to directly measure the lowest crystal-field energies of the rare-earth quantum magnet LiY$_{1-x}$Ho$_{x}$F$_{4}$, including their hyperfine splittings, with more than 10 times higher resolution than previous work. We are able to observe energy level splittings due to the $^6mathrm{Li}$ and $^7mathrm{Li}$ isotopes, as well as non-equidistantly spaced hyperfine transitions originating from dipolar and quadrupolar hyperfine interactions. We provide refined crystal field parameters and extract the dipolar and quadrupolar hyperfine constants ${A_J=0.02703pm0.00003}$ $textrm{cm}^{-1}$ and ${B= 0.04 pm0.01}$ $textrm{cm}^{-1}$, respectively. Thereupon we determine all crystal-field energy levels and magnetic moments of the $^5I_8$ ground state manifold, including the (non-linear) hyperfine corrections. The latter match the measurement-based estimates. The scale of the non-linear hyperfine corrections sets an upper bound for the inhomogeneous line widths that would still allow for unique addressing of a selected hyperfine transition. e.g. for quantum information applications. Additionally, we establish the far-infrared, low-temperature refractive index of LiY$_{1-x}$Ho$_{x}$F$_{4}$.
We present zero-field {mu}SR measurements for LiY$_{1-x}$Ho$_{x}$F$_{4}$ samples with x = 0.0017, 0.0085, 0.0406, and 0.0855. We characterize the dynamics associated with the formation of the (F-{mu}-F)$^{-1}$ complex by comparing our data to Monte C
We present measurements of magnetic field and frequency dependences of the low temperature (T = 1.8 K) AC-susceptibility, and temperature and field dependences of the longitudinal field positive muon spin relaxation ({mu}SR) for LiY$_{1-x}$Ho$_x$F$_4
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu
Hall effect and magnetoresistance have been measured on single crystals of $NdFeAsO_{1-x}F_{x}$ with x = 0 ($T_c$ = 0 $ $K) and x = 0.18 ($T_c$ = 50 $ $K). For the undoped samples, strong Hall effect and magnetoresistance with strong temperature depe
We report density functional theory calculations for the parent compound LaOFeAs of the newly discovered 26K Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. We find that the ground state is an ordered antiferromagnet, with staggered moment about 2.3$mu