ترغب بنشر مسار تعليمي؟ اضغط هنا

The Trigger System of the H.E.S.S. Telescope Array

73   0   0.0 ( 0 )
 نشر من قبل Stefan Funk
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

H.E.S.S. -- The High Energy Stereoscopic System-- is a new system of large atmospheric Cherenkov telescopes for GeV/TeV Gamma-ray astronomy. This paper describes the trigger system of H.E.S.S. with emphasis on the multi-telescope array level trigger. The system trigger requires the simultaneous detection of air-showers by several telescopes at the hardware level. This requirement allows a suppression of background events which in turn leads to a lower system energy threshold for the detection of Gamma-rays. The implementation of the H.E.S.S. trigger system is presented along with data taken to characterise its performance.



قيم البحث

اقرأ أيضاً

The High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes located in the Khomas Highland of Namibia. H.E.S.S. observes gamma rays above tens of GeV by detecting the Cherenkov light that is produced wh en Very High Energy gamma rays interact with the Earths atmosphere. The H.E.S.S. Data Acquisition System (DAQ) coordinates the nightly telescope operations, ensuring that the various components communicate properly and behave as intended. It also provides the interface between the telescopes and the people on shift who guide the operations. The DAQ comprises both the hardware and software, and since the beginning of H.E.S.S., both elements have been continuously adapted to improve the data-taking capabilities of the array and push the limits of what H.E.S.S. is capable of. Most recently, this includes the upgrade of the entire computing cluster hosting the DAQ software, and the accommodation of a new camera on the large 28m H.E.S.S. telescope. We discuss the performance of the upgraded DAQ and the lessons learned from these activities.
It is anticipated that the forthcoming Cherenkov Telescope Array (CTA) will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide ($8^{circ}$) fiel d of view using a densely pixelated camera comprising over $10^{4}$ individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced metadata from a limited subset of nearby telescopes to veto events prior to camera readout. We present the results of Monte-Carlo simulations that evaluate the efficacy of a Parallax width discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.
Aims. Previous observations with the H.E.S.S. telescope array revealed the existence of extended very-high-energy (VHE; E>100 GeV) {gamma}-ray emission, HESS J1023-575, coincident with the young stellar cluster Westerlund 2. At the time of discovery, the origin of the observed emission was not unambiguously identified, and follow-up observations have been performed to further investigate the nature of this {gamma}-ray source. Methods. The Carina region towards the open cluster Westerlund 2 has been re-observed, increasing the total exposure to 45.9 h. The combined dataset includes 33 h of new data and now permits a search for energy-dependent morphology and detailed spectroscopy. Results. A new, hard spectrum VHE {gamma}-ray source, HESSJ1026-582, was discovered with a statistical significance of 7{sigma}. It is positionally coincident with the Fermi LAT pulsar PSR J1028-5819. The positional coincidence and radio/{gamma}-ray characteristics of the LAT pulsar favors a scenario where the TeV emission originates from a pulsar wind nebula. The nature of HESS J1023-575 is discussed in light of the deep H.E.S.S. observations and recent multi-wavelength discoveries, including the Fermi LAT pulsar PSRJ1022-5746 and giant molecular clouds in the region. Despite the improved VHE dataset, a clear identification of the object responsible for the VHE emission from HESS J1023-575 is not yet possible, and contribution from the nearby high-energy pulsar and/or the open cluster remains a possibility.
130 - J. Bolmont , P. Corona , P. Gauron 2013
In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescopes camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.
The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affordable, camera concepts for these telescopes have to featu re low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffer for each channel and on-demand digitization and transmission of waveforms with typical spans of ~100 ns. The trigger ASIC, T5TEA, provides 4 low voltage differential signal (LVDS) trigger outputs and can generate a pedestal voltage independently for each channel. Trigger signals are generated by T5TEA based on the analog sum of the input in four independent groups of four adjacent channels and compared to a threshold set by the user. Thus, T5TEA generates four LVDS trigger outputs, as well as 16 pedestal voltages fed to TARGET C independently for each channel. We show preliminary results of the characterization and testing of TARGET C and T5TEA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا