ترغب بنشر مسار تعليمي؟ اضغط هنا

TARGET: A Digitizing And Trigger ASIC For The Cherenkov Telescope Array

85   0   0.0 ( 0 )
 نشر من قبل David Jankowsky
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The future ground-based gamma-ray observatory Cherenkov Telescope Array (CTA) will feature multiple types of imaging atmospheric Cherenkov telescopes, each with thousands of pixels. To be affordable, camera concepts for these telescopes have to feature low cost per channel and at the same time meet the requirements for CTA in order to achieve the desired scientific goals. We present the concept of the TeV Array Readout Electronics with GSa/s sampling and Event Trigger (TARGET) Application Specific Circuit (ASIC), envisaged to be used in the cameras of various CTA telescopes, e.g. the Gamma-ray Cherenkov Telescope (GCT), a proposed 2-Mirror Small-Sized Telescope, and the Schwarzschild-Couder Telescope (SCT), a proposed Medium-Sized Telescope. In the latest version of this readout concept the sampling and trigger parts are split into dedicated ASICs, TARGET C and T5TEA, both providing 16 parallel input channels. TARGET C features a tunable sampling rate (usually 1 GSa/s), a 16k sample deep buffer for each channel and on-demand digitization and transmission of waveforms with typical spans of ~100 ns. The trigger ASIC, T5TEA, provides 4 low voltage differential signal (LVDS) trigger outputs and can generate a pedestal voltage independently for each channel. Trigger signals are generated by T5TEA based on the analog sum of the input in four independent groups of four adjacent channels and compared to a threshold set by the user. Thus, T5TEA generates four LVDS trigger outputs, as well as 16 pedestal voltages fed to TARGET C independently for each channel. We show preliminary results of the characterization and testing of TARGET C and T5TEA.



قيم البحث

اقرأ أيضاً

An important aspect of the calibration of the Cherenkov Telescope Array is the pointing, which enables an exact alignment of each telescope and therefore allows to transform a position in the sky to a point in the plane of the Cherenkov camera and vi ce versa. The favoured approach for the pointing calibration of the medium size telescopes (MST) is the installation of an optical CCD-camera in the dish of the telescope that captures the position of the Cherenkov camera and of the stars in the night sky simultaneously during data taking. The adaption of this approach is presented in this proceeding.
Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telesco pe camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanc
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine teles copes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
It is anticipated that the forthcoming Cherenkov Telescope Array (CTA) will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide ($8^{circ}$) fiel d of view using a densely pixelated camera comprising over $10^{4}$ individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced metadata from a limited subset of nearby telescopes to veto events prior to camera readout. We present the results of Monte-Carlo simulations that evaluate the efficacy of a Parallax width discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.
This paper describes the concept of an FPGA-based digital camera trigger for imaging atmospheric Cherenkov telescopes, developed for the future Cherenkov Telescope Array (CTA). The proposed camera trigger is designed to select images initiated by the Cherenkov emission of extended air showers from very-high energy (VHE, E>20 GeV) photons and charged particles while suppressing signatures from background light. The trigger comprises three stages. A first stage employs programmable discriminators to digitize the signals arriving from the camera channels (pixels). At the second stage, a grid of low-cost FPGAs is used to process the digitized signals for camera regions with 37 pixels. At the third stage, trigger conditions found independently in any of the overlapping 37-pixel regions are combined into a global camera trigger by few central FPGAs. Trigger prototype boards based on Xilinx FPGAs have been designed, built and tested and were shown to function properly. Using these components a full camera trigger with a power consumption and price per channel of about 0.5 W and 19 Euro, respectively, can be built. With the described design the camera trigger algorithm can take advantage of pixel information in both the space and the time domain allowing, for example, the creation of triggers sensitive to the time-gradient of a shower image; the time information could also be exploited to online adjust the time window of the acquisition system for pixel data. Combining the results of the parallel execution of different trigger algorithms (optimized, for example, for the lowest and highest energies, respectively) on each FPGA can result in a better response over all photons energies (as demonstrated by Monte Carlo simulation in this work).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا