ترغب بنشر مسار تعليمي؟ اضغط هنا

The camera of the fifth H.E.S.S. telescope. Part I: System description

91   0   0.0 ( 0 )
 نشر من قبل Julien Bolmont
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In July 2012, as the four ground-based gamma-ray telescopes of the H.E.S.S. (High Energy Stereoscopic System) array reached their tenth year of operation in Khomas Highlands, Namibia, a fifth telescope took its first data as part of the system. This new Cherenkov detector, comprising a 614.5 m^2 reflector with a highly pixelized camera in its focal plane, improves the sensitivity of the current array by a factor two and extends its energy domain down to a few tens of GeV. The present part I of the paper gives a detailed description of the fifth H.E.S.S. telescopes camera, presenting the details of both the hardware and the software, emphasizing the main improvements as compared to previous H.E.S.S. camera technology.

قيم البحث

اقرأ أيضاً

The Imaging Atmospheric Cherenkov Telescope (IACT) works by imaging the very short flash of Cherenkov radiation generated by the cascade of relativistic charged particles produced when a TeV gamma ray strikes the atmosphere. This energetic air shower is initiated at an altitude of 10-30 km depending on the energy and the arrival direction of the primary gamma ray. Whether the best image of the shower is obtained by focusing the telescope at infinity and measuring the Cherenkov photon angles or focusing on the central region of the shower is a not obvious question. This is particularly true for large size IACT for which the depth of the field is much smaller. We address this issue in particular with the fifth telescope (CT5) of the High Energy Stereoscopic System (H.E.S.S.); a 28 m dish large size telescope recently entered in operation and sensitive to an energy threshold of tens of GeVs. CT5 is equipped with a focus system, its working principle and the expected effect of focusing depth on the telescope sensitivity at low energies (50-200 GeV) is discussed.
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of tel escopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
In this work, we describe the optical properties of the single photoelectron (SPE) calibration system designed for NectarCAM, a camera proposed for the Medium Sized Telescopes (MST) of the Cherenkov Telescope Array (CTA). One of the goals of the SPE system, as integral part of the NectarCAM camera, consists in measuring with high accuracy the gain of its photo-detection chain. The SPE system is based on a white painted screen where light pulses are injected through a fishtail light guide from a dedicated flasher. The screen - placed 15 mm away from the focal plane - is mounted on an XY motorization that allows movements over all the camera plane. This allows in-situ measurements of the SPE spectra via a complete scan of the 1855 photo-multiplier tubes (PMTs) of NectarCAM. This calibration process will enable the reduction of the systematic uncertainties on the energy reconstruction of $gamma$-rays coming from distant astronomical sources and detected by CTA.
NIKA2 is a dual-band millimetric continuum camera of 2900 Kinetic Inductance Detectors (KID), operating at $150$ and $260,rm{GHz}$, installed at the IRAM 30-meter telescope. We present the performance assessment of NIKA2 after one year of observation using a dedicated point-source calibration method, referred to as the emph{baseline} method. Using a large data set acquired between January 2017 and February 2018 that span the whole range of observing elevations and atmospheric conditions encountered at the IRAM 30-m telescope, we test the stability of the performance parameters. We report an instantaneous field of view (FOV) of 6.5 in diameter, filled with an average fraction of $84%$ and $90%$ of valid detectors at $150$ and $260,rm{GHz}$, respectively. The beam pattern is characterized by a FWHM of $17.6 pm 0.1$ and $11.1pm 0.2$, and a beam efficiency of $77% pm 2%$ and $55% pm 3%$ at $150$ and $260,rm{GHz}$, respectively. The rms calibration uncertainties are about $3%$ at $150,rm{GHz}$ and $6%$ at $260,rm{GHz}$. The absolute calibration uncertainties are of $5%$ and the systematic calibration uncertainties evaluated at the IRAM 30-m reference Winter observing conditions are below $1%$ in both channels. The noise equivalent flux density (NEFD) at $150$ and $260,rm{GHz}$ are of $9 pm 1, rm{mJy}cdot s^{1/2}$ and $30 pm 3, rm{mJy}cdot s^{1/2}$. This state-of-the-art performance confers NIKA2 with mapping speeds of $1388 pm 174$ and $111 pm 11 ,rm{arcmin}^2cdot rm{mJy}^{-2}cdot rm{h}^{-1}$ at $150$ and $260,rm{GHz}$. With these unique capabilities of fast dual-band mapping at high (better that 18) angular resolution, NIKA2 is providing an unprecedented view of the millimetre Universe.
95 - G. Puhlhofer 2013
FlashCam is a Cherenkov camera development project centered around a fully digital trigger and readout scheme with smart, digital signal processing, and a horizontal architecture for the electromechanical implementation. The fully digital approach, b ased on commercial FADCs and FPGAs as key components, provides the option to easily implement different types of triggers as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. At the same time, a large dynamic range and high resolution of low-amplitude signals in a single readout channel per pixel is achieved using compression of high amplitude signals in the preamplifier and signal processing in the FPGA. The readout of the front-end modules into a camera server is Ethernet-based using standard Ethernet switches. In its current implementation, data transfer and backend processing rates of ~3.8 GBytes/sec have been achieved. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several tens of kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, which is interfaced through analogue signal transmission to the digital readout system. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. This paper describes the FlashCam concept, its verification process, and its implementation for a 12 m class CTA telescope with PMT-based PDP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا