ﻻ يوجد ملخص باللغة العربية
The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H$_2$O emission. Single-dish monitoring and high resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclear jets with dense molecular gas and to investigate the circumnuclear environment of active galactic nuclei (AGN). Accretion disks with radii of 0.1--3 pc were mapped and masses of nuclear engines of order 10$^{6}$--10$^{8}$ M$_{odot}$ were determined. So far, $sim$50 extragalactic H$_2$O maser sources have been detected, but few have been studied in detail.
Using the HPC ressources of the state of Baden-Wurttemberg, we modelled for the first time the luminous burst from a young massive star by accretion of material from its close environment. We found that the surroundings of young massive stars are sha
We present results from our numerical simulations of collapsing massive molecular cloud cores. These numerical calculations show that massive stars assemble quickly with mass accretion rates exceeding 10^-3 Msol/yr and confirm that the mass accretion
Recent advances in our understanding of massive star formation have made clear the important role of protostellar disks in mediating accretion. Here we describe a simple, semi-analytic model for young, deeply embedded, massive accretion disks. Our ap
Accretion disks around active galactic nuclei are potentially unstable to star formation at large radii. We note that when the compact objects formed from some of these stars spiral into the central supermassive black hole, there is no radiative feed
Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Obs