ترغب بنشر مسار تعليمي؟ اضغط هنا

Variations in H2O+/H2O ratios toward massive star-forming regions

124   0   0.0 ( 0 )
 نشر من قبل Friedrich Wyrowski
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Early results from the Herschel Space Observatory revealed the water cation H2O+ to be an abundant ingredient of the interstellar medium. Here we present new observations of the H2O and H2O+ lines at 1113.3 and 1115.2 GHz using the Herschel Space Observatory toward a sample of high-mass star-forming regions to observationally study the relation between H2O and H2O+ . Nine out of ten sources show absorption from H2O+ in a range of environments: the molecular clumps surrounding the forming and newly formed massive stars, bright high-velocity outflows associated with the massive protostars, and unrelated low-density clouds along the line of sight. Column densities per velocity component of H2 O+ are found in the range of 10^12 to a few 10^13 cm-2 . The highest N(H2O+) column densities are found in the outflows of the sources. The ratios of H2O+/H2O are determined in a range from 0.01 to a few and are found to differ strongly between the observed environments with much lower ratios in the massive (proto)cluster envelopes (0.01-0.1) than in outflows and diffuse clouds. Remarkably, even for source components detected in H2O in emission, H2O+ is still seen in absorption.



قيم البحث

اقرأ أيضاً

This paper reviews the first results of observations of H2O line emission with Herschel-HIFI towards high-mass star-forming regions, obtained within the WISH guaranteed time program. The data reveal three kinds of gas-phase H2O: `cloud water in cold tenuous foreground clouds, `envelope water in dense protostellar envelopes, and `outflow water in protostellar outflows. The low H2O abundance (1e-10 -- 1e-9) in foreground clouds and protostellar envelopes is due to rapid photodissociation and freeze-out on dust grains, respectively. The outflows show higher H2O abundances (1e-7 -- 1e-6) due to grain mantle evaporation and (probably) neutral-neutral reactions.
To understand the origin of water line emission and absorption during high-mass star formation, we decompose high-resolution Herschel-HIFI line spectra toward 19 high-mass star-forming regions into three distinct physical components. Protostellar env elopes are usually seen as narrow absorptions or emissions in the H2O 1113 and 1669 GHz ground-state lines, the H2O 987 GHz excited-state line, and the H2O-18 1102 GHz ground-state line. Broader features due to outflows are usually seen in absorption in the H2O 1113 and 1669 GHz lines, in 987 GHz emission, and not seen in H2O-18, indicating a low column density and a high excitation temperature. The H2O 1113 and 1669 GHz spectra show narrow absorptions by foreground clouds along the line of sight, which have a low column density and a low excitation temperature, although their H2O ortho/para ratios are close to 3. The intensities of the H2O 1113 and 1669 GHz lines do not show significant trends with luminosity, mass, or age. In contrast, the 987 GHz line flux increases with luminosity and the H2O-18 line flux decreases with mass. Furthermore, appearance of the envelope in absorption in the 987 GHz and H2O-18 lines seems to be a sign of an early evolutionary stage. We conclude that the ground state transitions of H2O trace the outer parts of the envelopes, so that the effects of star formation are mostly noticeable in the outflow wings. These lines are heavily affected by absorption, so that line ratios of H2O involving the ground states must be treated with caution. The average H2O abundance in high-mass protostellar envelopes does not change much with time. The 987 GHz line appears to be a good tracer of the mean weighted dust temperature of the source, which may explain why it is readily seen in distant galaxies.
We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin. The characteristic hyperfine pattern of the H2O+ ground-state rotational transition , and the lack of other known low-energy transitions in this frequency range, identifies the feature as H2O+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation. In DR21, the velocity distribution of H2O+ matches that of the [CII] line at 158mum and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the HII-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H2O+ column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15 cm^-2 in Sgr B2.
We report the detection of OH+ and H2O+ in the z=0.89 absorber toward the lensed quasar PKS1830-211. The abundance ratio of OH+ and H2O+ is used to quantify the molecular hydrogen fraction (fH2) and the cosmic-ray ionization rate of atomic hydrogen ( zH) along two lines of sight, located at ~2 kpc and ~4 kpc to either side of the absorbers center. The molecular fraction decreases outwards, from ~0.04 to ~0.02, comparable to values measured in the Milky Way at similar galactocentric radii. For zH, we find values of ~2x10^-14 s^-1 and ~3x10^-15 s^-1, respectively, which are slightly higher than in the Milky Way at comparable galactocentric radii, possibly due to a higher average star formation activity in the z=0.89 absorber. The ALMA observations of OH+, H2O+, and other hydrides toward PKS1830-211 reveal the multi-phase composition of the absorbing gas. Taking the column density ratios along the southwest and northeast lines of sight as a proxy of molecular fraction, we classify the species ArH+, OH+, H2Cl+, H2O+, CH, and HF as tracing gases increasingly more molecular. Incidentally, our data allow us to improve the accuracy of H2O+ rest frequencies and thus refine the spectroscopic parameters.
95 - A.M.S. Boonman 2001
We present a study of gas-phase H2O and CO2 toward a sample of 14 massive protostars with the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO). Modeling of the H2O spectra using a homogeneous model with a constant exc itation temperature T_ex shows that the H2O abundances increase with temperature, up to a few times 10^-5 with respect to H2 for the hottest sources (T_ex ~500 K). This is still a factor of 10 lower than the H2O ice abundances observed toward cold sources in which evaporation is not significant (Keane et al. 2001). Gas-phase CO2 is not abundant in our sources. The abundances are nearly constant for T_ex>~100 K at a value of a few times 10^-7, much lower than the solid-state abundances of ~1--3 times 10^-6 (Gerakines et al. 1999). For both H2O and CO2 the gas/solid ratio increases with temperature, but the increase is much stronger for H2O than for CO2, suggesting a different type of chemistry. In addition to the homogeneous models, a power law model has been developed for one of our sources, based on the physical structure of this region as determined from submillimeter data by van der Tak et al. (1999). The resulting H2O model spectrum gives a good fit to the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا