ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation in Accretion Disks and SMBH Growth

102   0   0.0 ( 0 )
 نشر من قبل Alexander Dittmann
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accretion disks around active galactic nuclei are potentially unstable to star formation at large radii. We note that when the compact objects formed from some of these stars spiral into the central supermassive black hole, there is no radiative feedback and therefore the accretion rate is not limited by radiation forces. Using a set of accretion disk models, we calculate the accretion rate onto the central supermassive black hole in both gas and compact objects. We find that the timescale for a supermassive black hole to double in mass can decrease by factors ranging from $sim0.7$ to as low as $sim0.1$ in extreme cases, compared to gas accretion alone. Our results suggest that the formation of extremely massive black holes at high redshift may occur without prolonged super-Eddington gas accretion or very massive seed black holes. We comment on potential observational signatures as well as implications for other observations of active galactic nuclei.

قيم البحث

اقرأ أيضاً

91 - D. M.-A. Meyer 2017
Using the HPC ressources of the state of Baden-Wurttemberg, we modelled for the first time the luminous burst from a young massive star by accretion of material from its close environment. We found that the surroundings of young massive stars are sha ped as a clumpy disk whose fragments provoke outbursts once they fall onto the protostar and concluded that similar strong luminous events observed in high-mass star forming regions may be a signature of the presence of such disks.
White dwarfs (WDs) embedded in gaseous disks of active galactic nucleus (AGNs) can rapidly accrete materials from the disks and grow in mass to reach or even exceed the Chandrasekhar limit. Binary WD (BWD) mergers are also believed to occur in AGN ac cretion disks. We study observational signatures from these events. We suggest that mass-accreting WDs and BWD mergers in AGN disks can lead to thermonuclear explosions that drive an ejecta shock breakout from the disk surface and power a slow-rising, relatively dim Type Ia supernova (SN). Such SNe Ia may be always outshone by the emission of the AGN disk around the supermassive black hole (BH) with a mass of $M_{rm SMBH}gtrsim 10^8,M_odot$. Besides, accretion-induced collapses (AICs) of WDs in AGN disks may occur sometimes, which may form highly-magnetized millisecond neutron stars (NSs). The subsequent spin-down process of this nascent magnetar can deposit its rotational energy into the disk materials, resulting in a magnetar-driven shock breakout and a luminous magnetar-powered transient. We show that such an AIC event could power a rapidly evolving and luminous transient for a magnetic field of $Bsim10^{15},{rm G}$. The rising time and peak luminosity of the transient, powered by a magnetar with $Bsim10^{14},{rm G}$, are predicted to have similar properties with those of superluminous supernovae. AIC events taking place in the inner parts of the disk around a relatively less massive supermassive BHs ($M_{rm SMBH}lesssim10^8,M_odot$) are more likely to power the transients that are much brighter than the AGN disk emission and hence easily to be identified.
The exact time-dependent solution is obtained for a magnetic field growth during a spherically symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is increasing with time, changing from the initially uniform into a quasi-radial field. Equipartition between magnetic and kinetic energies in the falling gas is established in the developed stages of the flow. Estimates of the synchrotron radiation intensity are presented for the stationary flow. The main part of the radiation is formed in the region $r leq 7 r_g$, here $r_g$ is a BH gravitational radius. The two-dimensional stationary self-similar magnetohydrodynamic solution is obtained for the matter accretion into BH, in a presence of a large-scale magnetic field, when the magnetic field far from the BH is homogeneous and does not influence the flow. At the symmetry plane perpendicular to the direction of the distant magnetic field, the quasi-stationary disk is formed around BH, which structure is determined by dissipation processes. Parameters of the shock forming due to matter infall onto the disk are obtained. The radiation spectrum of the disk and the shock are obtained for the $10,, M_odot$ BH. The luminosity of such object is about the solar one, for a characteristic galactic gas density, with possibility of observation at distances less than 1 kpc. The spectra of a laminar and a turbulent disk structure around BH are very different. The turbulent disk emits a large part of its flux in the infrared. It may occur that some of the galactic infrared star-like sources are a single BH in the turbulent accretion state. The radiative efficiency of the magnetized disk is very high, reaching $sim 0.5,dot M,c^2$ so it was called recently as a magnetically arrested disk (MAD). Numerical simulations of MAD, and its appearance during accretion into neutron stars are considered and discussed.
Compact objects are expected to exist in the accretion disks of supermassive black holes (SMBHs) in active galactic nuclei (AGNs), and in the presence of such a dense environment ($sim 10^{14},{rm cm^{-3}}$), they will form a new kind of stellar popu lation denoted as Accretion-Modified Stars (AMSs). This hypothesis is supported by recent LIGO/Virgo detection of the mergers of very high-mass stellar binary black holes (BHs). We show that the TZOs will be trapped by the SMBH-disk within a typical AGN lifetime. In the context of SMBH-disks, the rates of Bondi accretion onto BHs are $sim 10^{9}L_{rm Edd}/c^{2}$, where $L_{rm Edd}$ is the Eddington luminosity and $c$ is the speed of light. Outflows developed from the hyper-Eddington accretion strongly impact the Bondi sphere and induce episodic accretion. We show that the hyper-Eddington accretion will be halted after an accretion interval of $t_{rm a}sim 10^{5}m_{1},$s, where $m_{1}=m_{bullet}/10sunm$ is the BH mass. The kinetic energy of the outflows accumulated during $t_{rm a}$ is equivalent to 10 supernovae driving an explosion of the Bondi sphere and developing blast waves. We demonstrate that a synchrotron flare from relativistic electrons accelerated by the blast waves peaks in the soft X-ray band ($sim 0.1,$keV), significantly contributing to the radio, optical, UV, and soft X-ray emission of typical radio-quiet quasars. External inverse Compton scattering of the electrons peaks around $40,$GeV and is detectable through {it Fermi}-LAT. The flare, decaying with $t^{-6/5}$ with a few months, will appear as a slowly varying transient. The flares, occurring at a rate of a few per year in radio-quiet quasars, provide a new mechanism for explaining AGN variability.
74 - N. Bucciantini 2020
The Fe K_alpha fluorescent line at 6.4 keV is a powerful probe of the space-time metric in the vicinity of accreting compact objects. We investigated here how some alternative theories of gravity, namely Scalar tensor Theories, that invoke the presen ce of a non-minimally coupled scalar field and predict the existence of strongly scalarized neutron stars, change the expected line shape with respect to General Relativity. By taking into account both deviations from the general relativistic orbital dynamics of the accreting disk, where the Fe line originates, and the changes in the light propagation around the neutron star, we computed line shapes for various inclinations of the disk with respect to the observer. We found that both the intensity of the low energy tails and the position of the high energy edge of the line change. Moreover we verified that even if those changes are in general of the order of a few percent, they are potentially observable with the next generation of X-ray satellites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا