ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations of DG Tauri with the Keck Interferometer

126   0   0.0 ( 0 )
 نشر من قبل Rachel Akeson
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first science results from the Keck Interferometer, a direct-detection infrared interferometer utilizing the two 10-meter Keck telescopes. The instrument and system components are briefly described. We then present observations of the T Tauri object DG Tau, which is resolved by the interferometer. The resolved component has a radius of 0.12 to 0.24 AU, depending on the assumed stellar and extended component fluxes and the model geometry used. Possible origins and implications of the resolved emission are discussed.



قيم البحث

اقرأ أيضاً

We present observations of the T Tauri stars BP Tau, DG Tau, DI Tau, GM Aur, LkCa 15, RW Aur and V830 Tau, using long baseline infrared interferometry at K band (2.2 microns) from the Keck Interferometer. The target sources have a range of mass accre tion rates and excess near-infrared emission. The interferometer is most sensitive to extended emission on characteristic size scales of 1 to 5 millarcseconds. All sources show evidence for resolved K band emission on these scales, although a few of the sources are marginally consistent with being unresolved. We calculate the infrared excess based on fitting stellar photosphere models to the optical photometry and estimate the physical size of the emission region using simple geometric models for the sources with a significant infrared excess. Assuming that the K band resolved emission traces the inner edge of the dust disk, we compare the measured characteristic sizes to predicted dust sublimation radii and find that the models require a range of dust sublimation temperatures and possibly optical depths within the inner rim to match the measured radii.
We present new K-band long baseline interferometer observations of three young stellar objects of the FU Orionis class, V1057 Cyg, V1515 Cyg and Z CMa-SE, obtained at the Keck Interferometer during its commissioning science period. The interferometer clearly resolves the source of near-infrared emission in all three objects. Using simple geometrical models we derive size scales (0.5-4.5 AU) for this emission. All three objects appear significantly more resolved than expected from simple models of accretion disks tuned to fit the broadband optical and infrared spectro-photometry. We explore variations in the key parameters that are able to lower the predicted visibility amplitudes to the measured levels, and conclude that accretion disks alone do not reproduce the spectral energy distributions and K-band visibilities simultaneously. We conclude that either disk models are inadequate to describe the near-infrared emission, or additional source components are needed. We hypothesize that large scale emission (10s of AU) in the interferometer field of view is responsible for the surprisingly low visibilities. This emission may arise in scattering by large envelopes believed to surround these objects.
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck Interferometer, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 mi croarcseconds. Here we discuss recent scientific results from ASTRA, and describe new scientific programs that will begin in 2010-2011. We begin with results from the self phase referencing (SPR) mode of ASTRA, which uses continuum light to correct atmospheric phase variations and produce a phase-stabilized channel for spectroscopy. We have observed a number of protoplanetary disks using SPR and a grism providing a spectral dispersion of ~2000. In our data we spatially resolve emission from dust as well as gas. Hydrogen line emission is spectrally resolved, allowing differential phase measurements across the emission line that constrain the relative centroids of different velocity components at the 10 microarcsecond level. In the upcoming year, we will begin dual-field phase referencing (DFPR) measurements of the Galactic Center and a number of exoplanet systems. These observations will, in part, serve as precursors to astrometric monitoring of stellar orbits in the Galactic Center and stellar wobbles of exoplanet host stars. We describe the design of several scientific investigations capitalizing on the upcoming phase-referencing and astrometric capabilities of ASTRA.
We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N-band from 8 to 12.5 microns in a nulling mode. By fitting the unique KIN data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk profile, gaussian profile (FWHM), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission and atomic metals including silicon located in the inner spatial regime near the white dwarf (WD) relative to the outer regime. There are also nebular emission lines and evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU from the WD, that are not found in the inner regime. Our evidence suggests that these features have been excited by the nova flash in the outer spatial regime before the blast wave reached these regions. These identifications support a model in which the dust appears to be present between outbursts and is not created during the outburst event. We further discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.
102 - Makoto Kishimoto 2009
The exploration of extragalactic objects with long-baseline interferometers in the near-infrared has been very limited. Here we report successful observations with the Keck interferometer at K-band (2.2 um) for four Type 1 AGNs, namely NGC4151, Mrk23 1, NGC4051, and the QSO IRAS13349+2438 at z=0.108. For the latter three objects, these are the first long-baseline interferometric measurements in the infrared. We detect high visibilities (V^2 ~ 0.8-0.9) for all the four objects, including NGC4151 for which we confirm the high V^2 level measured by Swain et al.(2003). We marginally detect a decrease of V^2 with increasing baseline lengths for NGC4151, although over a very limited range, where the decrease and absolute V^2 are well fitted with a ring model of radius 0.45+/-0.04 mas (0.039+/-0.003 pc). Strikingly, this matches independent radius measurements from optical--infrared reverberations that are thought to be probing the dust sublimation radius. We also show that the effective radius of the other objects, obtained from the same ring model, is either roughly equal to or slightly larger than the reverberation radius as a function of AGN luminosity. This suggests that we are indeed partially resolving the dust sublimation region. The ratio of the effective ring radius to the reverberation radius might also give us an approximate probe for the radial structure of the inner accreting material in each object. This should be scrutinized with further observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا