ﻻ يوجد ملخص باللغة العربية
The exploration of extragalactic objects with long-baseline interferometers in the near-infrared has been very limited. Here we report successful observations with the Keck interferometer at K-band (2.2 um) for four Type 1 AGNs, namely NGC4151, Mrk231, NGC4051, and the QSO IRAS13349+2438 at z=0.108. For the latter three objects, these are the first long-baseline interferometric measurements in the infrared. We detect high visibilities (V^2 ~ 0.8-0.9) for all the four objects, including NGC4151 for which we confirm the high V^2 level measured by Swain et al.(2003). We marginally detect a decrease of V^2 with increasing baseline lengths for NGC4151, although over a very limited range, where the decrease and absolute V^2 are well fitted with a ring model of radius 0.45+/-0.04 mas (0.039+/-0.003 pc). Strikingly, this matches independent radius measurements from optical--infrared reverberations that are thought to be probing the dust sublimation radius. We also show that the effective radius of the other objects, obtained from the same ring model, is either roughly equal to or slightly larger than the reverberation radius as a function of AGN luminosity. This suggests that we are indeed partially resolving the dust sublimation region. The ratio of the effective ring radius to the reverberation radius might also give us an approximate probe for the radial structure of the inner accreting material in each object. This should be scrutinized with further observations.
There is X-ray, optical, and mid-infrared imaging and spectroscopic evidence that the late-stage ultraluminous infrared galaxy merger Mrk 273 hosts a powerful active galactic nucleus (AGN). However, the exact location of the AGN and the nature of the
The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck Interferometer, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 mi
We present the first science results from the Keck Interferometer, a direct-detection infrared interferometer utilizing the two 10-meter Keck telescopes. The instrument and system components are briefly described. We then present observations of the
The disk-wind scenario for the broad-line region (BLR) and toroidal obscuration in active galactic nuclei predicts the disappearance of the BLR at low luminosities. In accordance with the model predictions, data from a nearly complete sample of nearb
Type 2 AGNs with intrinsically weak broad emission lines (BELs) would be exceptions to the unified model. After examining a number of proposed candidates critically, we find that the sample is contaminated significantly by objects with BELs of streng