ترغب بنشر مسار تعليمي؟ اضغط هنا

Milliarcsecond N-Band Observations of the Nova RS Ophiuchi: First Science with the Keck Interferometer Nuller

200   0   0.0 ( 0 )
 نشر من قبل William Danchi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report observations of the nova RS Ophiuchi (RS Oph) using the Keck Interferometer Nuller (KIN), approximately 3.8 days following the most recent outburst that occurred on 2006 February 12. These observations represent the first scientific results from the KIN, which operates in N-band from 8 to 12.5 microns in a nulling mode. By fitting the unique KIN data, we have obtained an angular size of the mid-infrared continuum of 6.2, 4.0, or 5.4 mas for a disk profile, gaussian profile (FWHM), and shell profile respectively. The data show evidence of enhanced neutral atomic hydrogen emission and atomic metals including silicon located in the inner spatial regime near the white dwarf (WD) relative to the outer regime. There are also nebular emission lines and evidence of hot silicate dust in the outer spatial region, centered at ! 17 AU from the WD, that are not found in the inner regime. Our evidence suggests that these features have been excited by the nova flash in the outer spatial regime before the blast wave reached these regions. These identifications support a model in which the dust appears to be present between outbursts and is not created during the outburst event. We further discuss the present results in terms of a unifying model of the system that includes an increase in density in the plane of the orbit of the two stars created by a spiral shock wave caused by the motion of the stars through the cool wind of the red giant star. These data show the power and potential of the nulling technique which has been developed for the detection of Earth-like planets around nearby stars for the Terrestrial Planet Finder Mission and Darwin missions.



قيم البحث

اقرأ أيضاً

The ASTrometric and phase-Referenced Astronomy (ASTRA) project will provide phase referencing and astrometric observations at the Keck Interferometer, leading to enhanced sensitivity and the ability to monitor orbits at an accuracy level of 30-100 mi croarcseconds. Here we discuss recent scientific results from ASTRA, and describe new scientific programs that will begin in 2010-2011. We begin with results from the self phase referencing (SPR) mode of ASTRA, which uses continuum light to correct atmospheric phase variations and produce a phase-stabilized channel for spectroscopy. We have observed a number of protoplanetary disks using SPR and a grism providing a spectral dispersion of ~2000. In our data we spatially resolve emission from dust as well as gas. Hydrogen line emission is spectrally resolved, allowing differential phase measurements across the emission line that constrain the relative centroids of different velocity components at the 10 microarcsecond level. In the upcoming year, we will begin dual-field phase referencing (DFPR) measurements of the Galactic Center and a number of exoplanet systems. These observations will, in part, serve as precursors to astrometric monitoring of stellar orbits in the Galactic Center and stellar wobbles of exoplanet host stars. We describe the design of several scientific investigations capitalizing on the upcoming phase-referencing and astrometric capabilities of ASTRA.
201 - A. Evans 2006
We present infrared spectroscopy of the recurrent nova RS Ophiuchi, obtained 11.81, 20.75 and 55.71 days following its 2006 eruption. The spectra are dominated by hydrogen recombination lines, together with HeI, OI and OII lines; the electron tempera ture of ~10^4 K implied by the recombination spectrum suggests that we are seeing primarily the wind of the red giant, ionized by the ultraviolet flash when RS Oph erupted. However, strong coronal emission lines (i.e. emission from fine structure transitions in ions having high ionization potential) are present in the last spectrum. These imply a temperature of 930000K for the coronal gas; this is in line with x-ray observations of the 2006 eruption. The emission line widths decrease with time in a way that is consistent with the shock model for the x-ray emission.
96 - N. G. Kantharia 2007
The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.
60 - J.D. Monnier 2006
Following the recent outburst of the recurrent nova RS Oph on 2006 Feb 12, we measured its near-infrared size using the IOTA, Keck, and PTI Interferometers at multiple epochs. The characteristic size of ~3 milliarcseconds hardly changed over the firs t 60 days of the outburst, ruling out currently-popular models whereby the near-infrared emission arises from hot gas in the expanding shock. The emission was also found to be significantly asymmetric, evidenced by non-zero closure phases detected by IOTA. The physical interpretation of these data depend strongly on the adopted distance to RS Oph. Our data can be interpreted as the first direct detection of the underlying RS Oph binary, lending support to the recent ``reborn red giant models of Hachisu & Kato. However, this result hinges on an RS Oph distance of ~< 540 pc, in strong disagreement with the widely-adopted distance of ~1.6 kpc. At the farther distance, our observations imply instead the existence of a non-expanding, dense and ionized circumbinary gaseous disk or reservoir responsible for the bulk of the near-infrared emission. Longer-baseline infrared interferometry is uniquely suited to distinguish between these models and to ultimately determine the distance, binary orbit, and component masses for RS Oph, one of the closest-known (candidate) SNIa progenitor systems.
We present the first science results from the Keck Interferometer, a direct-detection infrared interferometer utilizing the two 10-meter Keck telescopes. The instrument and system components are briefly described. We then present observations of the T Tauri object DG Tau, which is resolved by the interferometer. The resolved component has a radius of 0.12 to 0.24 AU, depending on the assumed stellar and extended component fluxes and the model geometry used. Possible origins and implications of the resolved emission are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا