ﻻ يوجد ملخص باللغة العربية
Using the Uves echelle spectrograph at the ESO VLT, we observed the absorption line spectrum of the QSO 0103-260 in the Fors Deep Field. In addition to the expected Ly-alpha forest lines, we detected at least 16 metal absorption systems with highly different ionization levels in the observed spectral range. The redshifts of the metal absorption systems are strongly correlated with the redshift distribution of the high-z galaxies in the Fors Deep Field and with the strength (but not the number density) of the Ly-alpha forest lines. Both the metal systems and the galaxies show clustering at least up to the QSO emission line redshift of 3.365, but only few of these galaxy accumulations seem to form bound systems.
Dedicating a major fraction of its guaranteed time, the FORS consortium established a FORS Deep Field which contains a known QSO at z = 3.36. It was imaged in UBgRIz with FORS at the VLT as well as in J and Ks with the NTT. Covering an area 6-8 times
We present a catalogue and atlas of low-resolution spectra of a well defined sample of 341 objects in the FORS Deep Field. All spectra were obtained with the FORS instruments at the ESO VLT with essentially the same spectroscopic set-up. The observed
Results of a careful analysis of the highly ionized absorption systems, observed over the redshift range 2.198--2.2215 in the zem=2.24 HDFS-QSO J2233-606, are presented. Strong OVI and NeVIII absorptions are detected. Most of the lines show signature
We explore the build-up of stellar mass in galaxies over a wide redshift range 0.4 < z < 5.0 by studying the evolution of the specific star formation rate (SSFR), defined as the star formation rate per unit stellar mass, as a function of stellar mass
We present the results of a search for Lyman-alpha emission galaxies at z~ 5.7 in the FORS Deep Field. The objective of this study is to improve the faint end of the luminosity function of high-redshift Lyman-alpha emitting galaxies and to derive pro