ﻻ يوجد ملخص باللغة العربية
Dedicating a major fraction of its guaranteed time, the FORS consortium established a FORS Deep Field which contains a known QSO at z = 3.36. It was imaged in UBgRIz with FORS at the VLT as well as in J and Ks with the NTT. Covering an area 6-8 times larger as the HDFs but with similar depth in the optical it is one of the largest deep fields up to date to investigate i) galaxy evolution in the field from present up to z $sim$ 5, ii) the galaxy distribution in the line of sight to the QSO, iii) the high-z QSO environment and iv) the galaxy-galaxy lensing signal in such a large field. In this presentation a status report of the FORS Deep Field project is given. In particular, the field selection, the imaging results (number counts, photometric redshifts etc.) and the first spectroscopic results are presented.
We present a catalogue and atlas of low-resolution spectra of a well defined sample of 341 objects in the FORS Deep Field. All spectra were obtained with the FORS instruments at the ESO VLT with essentially the same spectroscopic set-up. The observed
The FORS Deep Field project is a multi-colour, multi-object spectroscopic investigation of an approx. 7 times 7 region near the south galactic pole based mostly on observations carried out with the FORS instruments attached to the VLT telescopes. It
We explore the build-up of stellar mass in galaxies over a wide redshift range 0.4 < z < 5.0 by studying the evolution of the specific star formation rate (SSFR), defined as the star formation rate per unit stellar mass, as a function of stellar mass
We present the results of a search for Lyman-alpha emission galaxies at z~ 5.7 in the FORS Deep Field. The objective of this study is to improve the faint end of the luminosity function of high-redshift Lyman-alpha emitting galaxies and to derive pro
Using the Uves echelle spectrograph at the ESO VLT, we observed the absorption line spectrum of the QSO 0103-260 in the Fors Deep Field. In addition to the expected Ly-alpha forest lines, we detected at least 16 metal absorption systems with highly d