ﻻ يوجد ملخص باللغة العربية
We present a catalogue and atlas of low-resolution spectra of a well defined sample of 341 objects in the FORS Deep Field. All spectra were obtained with the FORS instruments at the ESO VLT with essentially the same spectroscopic set-up. The observed extragalactic objects cover the redshift range 0.1 to 5.0. 98 objects are starburst galaxies and QSOs at z > 2. Using this data set we investigated the evolution of the characteristic spectral properties of bright starburst galaxies and their mutual relations as a function of the redshift. Significant evolutionary effects were found for redshifts 2 < z < 4. Most conspicuous are the increase of the average C IV absorption strength, of the dust reddening, and of the intrinsic UV luminosity, and the decrease of the average Ly alpha emission strength with decreasing redshift. In part the observed evolutionary effects can be attributed to an increase of the metallicity of the galaxies with cosmic age. Moreover, the increase of the total star-formation rates and the stronger obscuration of the starburst cores by dusty gas clouds suggest the occurrence of more massive starbursts at later cosmic epochs.
Dedicating a major fraction of its guaranteed time, the FORS consortium established a FORS Deep Field which contains a known QSO at z = 3.36. It was imaged in UBgRIz with FORS at the VLT as well as in J and Ks with the NTT. Covering an area 6-8 times
We present the rationale for and the observational description of ASPECS: The ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to
The FORS Deep Field project is a multi-colour, multi-object spectroscopic investigation of an approx. 7 times 7 region near the south galactic pole based mostly on observations carried out with the FORS instruments attached to the VLT telescopes. It
We present the Arizona CDFS Environment Survey (ACES), a recently-completed spectroscopic redshift survey of the Chandra Deep Field South (CDFS) conducted using IMACS on the Magellan-Baade telescope. In total, the survey targeted 7277 unique sources
We explore the build-up of stellar mass in galaxies over a wide redshift range 0.4 < z < 5.0 by studying the evolution of the specific star formation rate (SSFR), defined as the star formation rate per unit stellar mass, as a function of stellar mass