ﻻ يوجد ملخص باللغة العربية
We present analysis of Hubble Space Telescope images of 82 nearby field late-M and L dwarfs. We resolve 13 of these systems into double M/L dwarf systems and identify an additional possible binary. Combined with previous observations of 20 L dwarfs, we derive an observed binary fraction for ultracool dwarfs of 17+4-3%, where the statistics included systems with separations in the range 1.6-16 A.U. We argue that accounting for biases and incompleteness leads to an estimated binary fraction 15+-5% in the range 1.6-16 A.U. No systems wider than 16 A.U. are seen, implying that the wide companion frequency is less than 1.7%; the distribution of orbital separation is peaked at ~2-4 A.U. and differs greatly from the G dwarf binary distribution. Indirect evidence suggests that the binary fraction is ~5+-3% for separations less than 1.6 A.U. We find no evidence for differences in the binary fraction between stellar late-M and L dwarfs and substellar L dwarfs. We note, however, that the widest (>10 A.U.) systems in our sample are all of earlier (M8-L0) spectral type; a larger sample is needed determine if this is a real effect. One system with a spectral type of L7 has a secondary that is fainter in the HST F814W filter but brighter in F1042M; we argue that this secondary is an early-T dwarf.
Up to now, most planet search projects have concentrated on F to K stars. In order to considerably widen the view, we have stated a survey for planets of old, nearby brown dwarfs and very low mass stars. Using UVES, we have observed 26 brown dwarfs a
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to
We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy, and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near infrared spectra obtained wi
Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs are poorly understood. The multiplicity properties and minimum mass of the brown-dwarf mass function provide critical empirical di
We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs, in the (sub)stellar mass range between $0.01 M_{odot}$ and $0.1 M_{odot}$. Based on the extrapolation