ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensing Discovery of a Population of Very Tight, Very Low-mass Binary Brown Dwarfs

167   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs are poorly understood. The multiplicity properties and minimum mass of the brown-dwarf mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low-mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 Msun and 0.034 Msun, and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field brown-dwarf binaries known. The discovery of a population of such binaries indicates that brown dwarf binaries can robustly form at least down to masses of ~0.02 Msun. Future microlensing surveys will measure a mass-selected sample of brown-dwarf binary systems, which can then be directly compared to similar samples of stellar binaries.



قيم البحث

اقرأ أيضاً

We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy, and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near infrared spectra obtained wi th the Very Large Telescope and the Gran Telescopio Canarias. One of these new T dwarfs is mildly metal-poor with slightly suppressed $K$-band flux. We presented a new X-shooter spectrum of a known benchmark sdT5.5 subdwarf, HIP 73786B. To better understand observational properties of brown dwarfs, we discussed transition zones (mass ranges) with low-rate hydrogen, lithium, and deuterium burning in brown dwarf population. The hydrogen burning transition zone is also the substellar transition zone that separates very low-mass stars, transitional, and degenerate brown dwarfs. Transitional brown dwarfs have been discussed in previous works of the Primeval series. Degenerate brown dwarfs without hydrogen fusion are the majority of brown dwarfs. Metal-poor degenerate brown dwarfs of the Galactic thick disc and halo have become T5+ subdwarfs. We selected 41 T5+ subdwarfs from the literature by their suppressed $K$-band flux. We studied the spectral-type - colour correlations, spectral-type - absolute magnitude correlations, colour-colour plots, and HR diagrams of T5+ subdwarfs, in comparison to these of L-T dwarfs and L subdwarfs. We discussed the T5+ subdwarf discovery capability of deep sky surveys in the 2020s.
133 - K.-H. Hwang , A. Udalski , C. Han 2010
The mass function and statistics of binaries provide important diagnostics of the star formation process. Despite this importance, the mass function at low masses remains poorly known due to observational difficulties caused by the faintness of the o bjects. Here we report the microlensing discovery and characterization of a binary lens composed of very low-mass stars just above the hydrogen-burning limit. From the combined measurements of the Einstein radius and microlens parallax, we measure the masses of the binary components of $0.10pm 0.01 M_odot$ and $0.09pm 0.01 M_odot$. This discovery demonstrates that microlensing will provide a method to measure the mass function of all Galactic populations of very low mass binaries that is independent of the biases caused by the luminosity of the population.
We present 27 new L subdwarfs and classify five of them as esdL and 22 as sdL. Our L subdwarf candidates were selected with the UKIRT Infrared Deep Sky Survey and Sloan Digital Sky Survey. Spectroscopic follow-up was carried out primarily with the OS IRIS spectrograph on the Gran Telescopio Canarias. Some of these new objects were followed up with the X-shooter instrument on the Very Large Telescope. We studied the photometric properties of the population of known L subdwarfs using colour-spectral type diagrams and colour-colour diagrams, by comparison with L dwarfs and main-sequence stars, and identified new colour spaces for L subdwarf selection/study in current and future surveys. We further discussed the brown dwarf transition-zone and the observational stellar/substellar boundary. We found that about one-third of 66 known L subdwarfs are substellar objects, with two-thirds being very low-mass stars. We also present the Hertzsprung-Russell diagrams, spectral type-absolute magnitude corrections, and tangential velocities of 20 known L subdwarfs observed by the Gaia astrometry satellite. One of our L subdwarf candidates, ULAS J233227.03+123452.0, is a mildly metal-poor spectroscopic binary brown dwarf: a ~L6p dwarf and a ~T4p dwarf. This binary is likely a thick disc member according to its kinematics.
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to -near-infrared spectroscopy with the Very Large Telescope. We also obtained an optical-to-near-infrared spectrum of a previously known L subdwarf, ULAS J135058.85+081506.8, and reclassified it as a usdL3 subdwarf. These three objects all have typical halo kinematics. They have $T_{rm eff}$ around 2050$-$2250 K, $-$1.8 $leq$ [Fe/H] $leq -$1.5, and mass around 0.0822$-$0.0833 M$_{odot}$, according to model spectral fitting and evolutionary models. These sources are likely halo transitional brown dwarfs with unsteady hydrogen fusion, as their masses are just below the hydrogen-burning minimum mass, which is $sim$ 0.0845 M$_{odot}$ at [Fe/H] = $-$1.6 and $sim$ 0.0855 M$_{odot}$ at [Fe/H] = $-$1.8. Including these, there are now nine objects in the `halo brown dwarf transition zone, which is a `substellar subdwarf gap that spans a wide temperature range within a narrow mass range of the substellar population.
We present analysis of Hubble Space Telescope images of 82 nearby field late-M and L dwarfs. We resolve 13 of these systems into double M/L dwarf systems and identify an additional possible binary. Combined with previous observations of 20 L dwarfs, we derive an observed binary fraction for ultracool dwarfs of 17+4-3%, where the statistics included systems with separations in the range 1.6-16 A.U. We argue that accounting for biases and incompleteness leads to an estimated binary fraction 15+-5% in the range 1.6-16 A.U. No systems wider than 16 A.U. are seen, implying that the wide companion frequency is less than 1.7%; the distribution of orbital separation is peaked at ~2-4 A.U. and differs greatly from the G dwarf binary distribution. Indirect evidence suggests that the binary fraction is ~5+-3% for separations less than 1.6 A.U. We find no evidence for differences in the binary fraction between stellar late-M and L dwarfs and substellar L dwarfs. We note, however, that the widest (>10 A.U.) systems in our sample are all of earlier (M8-L0) spectral type; a larger sample is needed determine if this is a real effect. One system with a spectral type of L7 has a secondary that is fainter in the HST F814W filter but brighter in F1042M; we argue that this secondary is an early-T dwarf.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا