ﻻ يوجد ملخص باللغة العربية
We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs, in the (sub)stellar mass range between $0.01 M_{odot}$ and $0.1 M_{odot}$. Based on the extrapolation of numerical simulations of planetesimal formation by the streaming instability, we obtain the characteristic mass of the planetesimals and the initial masses of the protoplanets (largest bodies from the planetesimal size distributions), in either the early self-gravitating phase or the later non-self-gravitating phase of the protoplanetary disk evolution. We find that the initial protoplanets form with masses that increase with host mass, orbital distance and decrease with disk age. Around late M-dwarfs of $0.1 M_{odot}$, these protoplanets can grow up to Earth-mass planets by pebble accretion. However, around brown dwarfs of $0.01 M_{odot}$, planets do not grow larger than Mars mass when the initial protoplanets are born early in self-gravitating disks, and their growth stalls at around $0.01$ Earth-mass when they are born late in non-self-gravitating disks. Around these low mass stars and brown dwarfs, we find no channel for gas giant planet formation because the solid cores remain too small. When the initial protoplanets form only at the water-ice line, the final planets typically have ${gtrsim} 15%$ water mass fraction. Alternatively, when the initial protoplanets form log-uniformly distributed over the entire protoplanetary disk, the final planets are either very water-rich (water mass fraction ${gtrsim}15%$) or entirely rocky (water mass fraction ${lesssim}5%$).
Measured disk masses seem to be too low to form the observed population of planetary systems. In this context, we develop a population synthesis code in the pebble accretion scenario, to analyse the disk mass dependence on planet formation around low
It is estimated that ~60% of all stars (including brown dwarfs) have masses below 0.2Msun. Currently, there is no consensus on how these objects form. I will briefly review the four main theories for the formation of low-mass objects: turbulent fragm
There is growing observational evidence that disk evolution is stellar-mass dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS sp
We present new 890 $mu m$ continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -- which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population
We report the discovery of an esdL3 subdwarf, ULAS J020858.62+020657.0, and a usdL4.5 subdwarf, ULAS J230711.01+014447.1. They were identified as L subdwarfs by optical spectra obtained with the Gran Telescopio Canarias, and followed up by optical-to