ترغب بنشر مسار تعليمي؟ اضغط هنا

The Infall of Gas onto the Galactic Disk

54   0   0.0 ( 0 )
 نشر من قبل Brad K. Gibson
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brad K. Gibson




اسأل ChatGPT حول البحث

Ongoing accretion of low-metallicity gas onto the disk is a natural prediction of semi-analytical Galactic chemical evolution models. This star formation fuel ameliorates the overproduction of metal-poor G- and K-dwarfs in the solar neighbourhood which otherwise plague so-called ``closed-box models of Galaxy evolution. Do High-Velocity Clouds (HVCs) represent the source of this necessary fuel? We know that HVCs provide an important clue as to the processes governing galaxy formation and evolution - what is less clear is whether their role lies more closely aligned with cosmology (as relics of the Local Groups formation) or star formation (as tidal debris from nearby disrupted dwarfs, or the waste byproducts of disk supernova-driven winds). I provide a summary of recent speculations as to the origins of HVCs, and highlight several future projects which will lead to a deeper understanding of the role they play in galaxy evolution.



قيم البحث

اقرأ أيضاً

Growth of the structure in the Universe manifest as accretion flows of galaxies onto groups and clusters. Thus, the present day properties of groups and their member galaxies are influenced by the characteristics of this continuous infall pattern. Se veral works both theoretical, in numerical simulations, and in observations, study this process and provide useful steps for a better understanding of galaxy systems and their evolution. We aim at exploring the streaming flow of galaxies onto groups using observational peculiar velocity data. The effects of distance uncertainties are also analyzed as well as the relation between the infall pattern and group and environment properties.This work deals with analysis of peculiar velocity data and their projection on the direction to group centers, to determine the mean galaxy infall flow. We applied this analysis to the galaxies and groups extracted from the Cosmicflows-3 catalog. We also use mock catalogs derived from numerical simulations to explore the effects of distance uncertainties on the derivation of the galaxy velocity flow onto groups. We determine the infalling velocity field onto galaxy groups with cz < 0.033 using peculiar velocity data. We measure the mean infall velocity onto group samples of different mass range, and also explore the impact of the environment where the group reside. Well beyond the group virial radius, the surrounding large-scale galaxy overdensity may impose additional infalling streaming amplitudes in the range 200 to 400 km s$^{-1}$. Also, we find that groups in samples with a well controlled galaxy density environment show an increasing infalling velocity amplitude with group mass, consistent with the predictions of the linear model. These results from observational data are in excellent agreement with those derived from the mock catalogs.
The recently discovered Virgo stellar over-density, which expands over ~1000deg^2 perpendicularly to the Galactic disk plane (7< Z <15 kpc, R~7 kpc), is the largest clump of tidal debris ever detected in the outer halo and is likely related with the accretion of a nearby dwarf galaxy by the Milky Way. We carry out N-body simulations of the Sagittarius stream to show that this giant stellar over-density is a confirmation of theoretical model predictions for the leading tail of the Sagittarius stream to cross the Milky Way plane in the Solar neighborhood. Radial velocity measurements are needed to confirm this association and to further constrain the shape of the Milky Way dark matter halo through a new generation of theoretical models. If the identification of Virgo over-density and the Sagittarius leading arm is correct, we predict highly negative radial velocities for the stars of Virgo over-density. The detection of this new portion of the Sagittarius tidal stream would represent an excellent target for the on-going and future kinematic surveys and for dark matter direct detection experiments in the proximity of the Sun.
106 - Fabian Heitsch 2013
Two aspects of filamentary molecular cloud evolution are addressed: (1) Exploring analytically the role of the environment for the evolution of filaments demonstrates that considering them in isolation (i.e. just addressing the fragmentation stabilit y) will result in unphysical conclusions about the filaments properties. Accretion can also explain the observed decorrelation between FWHM and peak column density. (2) Free-fall accretion onto finite filaments can lead to the characteristic fans of infrared-dark clouds around star-forming regions. The fans may form due to tidal forces mostly arising at the ends of the filaments, consistent with numerical models and earlier analytical studies.
Galaxy clusters are expected to form hierarchically in a LCDM universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass halos. Galaxy clusters assemble late, doubling their masses since z~0.5, and so the outer regions of clusters should be replete with infalling group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters at z~0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2x10^13-7x10^14Msun, and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is ~25x higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2x10^14Msun, or 19% of the mass within the primary cluster itself. We estimate that ~10^15Msun clusters increase their masses by 16% between z=0.223 and the present day due to the accretion of groups with M200>10^13.2Msun. This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound in halos. The mass function of the infalling X-ray groups appears significantly top-heavy with respect to that of field X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter halos being biased tracers of the underlying large-scale density distribution.
We report high spatial resolution VLA observations of the low-mass star-forming region IRAS 16293-2422 using four molecular probes: ethyl cyanide (CH$_3$CH$_2$CN), methyl formate (CH$_3$OCHO), formic acid (HCOOH), and the ground vibrational state of silicon monoxide (SiO). Ethyl cyanide emiss ion has a spatial scale of $sim20$ and encompasses binary cores A and B as determined by continuum emission peaks. Surrounded by formic acid emission, methyl formate emission has a spatial scale of $sim6$and is confined to core B. SiO emission shows two velocity components with spatial scales less than 2$$ that map $sim2$ northeast of the A and B symmetry axis. The redshifted SiO is $sim2$ northwest of blueshifted SiO along a position angle of $sim135^o$ which is approximately parallel to the A and B symmetry axis. We interpret the spatial position offset in red and blueshifted SiO emission as due to rotation of a protostellar accretion disk and we derive $sim$1.4 M$_{odot}$ interior to the SiO emission. In the same vicinity, Mundy et al. (1986) also concluded rotation of a nearly edge-on disk from OVRO observations of much stronger and ubiquitous $^{13}$CO emission but the direction of rotation is opposite to the SiO emission findings. Taken together, SiO and $^{13}$CO data suggest evidence for a counter-rotating disk. Moreover, archival BIMA array $^{12}$CO data show an inverse P Cygni profile with the strongest absorption in close proximity to the SiO emission, indicating unambiguous material infall toward the counter-rotating protostellar disk at a new source location within the IRAS 16293-2422 complex. The details of these observations and our interpretations are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا