ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Infall onto Molecular Filaments

69   0   0.0 ( 0 )
 نشر من قبل Fabian Heitsch
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabian Heitsch




اسأل ChatGPT حول البحث

Two aspects of filamentary molecular cloud evolution are addressed: (1) Exploring analytically the role of the environment for the evolution of filaments demonstrates that considering them in isolation (i.e. just addressing the fragmentation stability) will result in unphysical conclusions about the filaments properties. Accretion can also explain the observed decorrelation between FWHM and peak column density. (2) Free-fall accretion onto finite filaments can lead to the characteristic fans of infrared-dark clouds around star-forming regions. The fans may form due to tidal forces mostly arising at the ends of the filaments, consistent with numerical models and earlier analytical studies.

قيم البحث

اقرأ أيضاً

185 - Fabian Heitsch 2013
In an extension of Fischera & Martin (2012a) and Heitsch (2013), two aspects of the evolution of externally pressurized, hydrostatic filaments are discussed. (a) The free-fall accretion of gas onto such a filament will lead to filament parameters (sp ecifically, FWHM--column density relations) inconsistent with the observations of Arzoumanian et al. (2011), except for two cases: For low-mass, isothermal filaments, agreement is found as in the analysis by Fischera & Martin (2012b). Magnetized cases, for which the field scales weakly with the density as $Bpropto n^{1/2}$, also reproduce observed parameters. (b) Realistically, the filaments will be embedded not only in gas of non-zero pressure, but also of non-zero density. Thus, the appearance of sheet-embedded filaments is explored. Generating a grid of filament models and comparing the resulting column density ratios and profile shapes with observations suggests that the three-dimensional filament profiles are intrinsically flatter than isothermal, beyond projection and evolution effects.
Growth of the structure in the Universe manifest as accretion flows of galaxies onto groups and clusters. Thus, the present day properties of groups and their member galaxies are influenced by the characteristics of this continuous infall pattern. Se veral works both theoretical, in numerical simulations, and in observations, study this process and provide useful steps for a better understanding of galaxy systems and their evolution. We aim at exploring the streaming flow of galaxies onto groups using observational peculiar velocity data. The effects of distance uncertainties are also analyzed as well as the relation between the infall pattern and group and environment properties.This work deals with analysis of peculiar velocity data and their projection on the direction to group centers, to determine the mean galaxy infall flow. We applied this analysis to the galaxies and groups extracted from the Cosmicflows-3 catalog. We also use mock catalogs derived from numerical simulations to explore the effects of distance uncertainties on the derivation of the galaxy velocity flow onto groups. We determine the infalling velocity field onto galaxy groups with cz < 0.033 using peculiar velocity data. We measure the mean infall velocity onto group samples of different mass range, and also explore the impact of the environment where the group reside. Well beyond the group virial radius, the surrounding large-scale galaxy overdensity may impose additional infalling streaming amplitudes in the range 200 to 400 km s$^{-1}$. Also, we find that groups in samples with a well controlled galaxy density environment show an increasing infalling velocity amplitude with group mass, consistent with the predictions of the linear model. These results from observational data are in excellent agreement with those derived from the mock catalogs.
221 - D. Harsono 2010
Gravitational instability plays an important role in driving gas accretion in massive protostellar discs. Particularly strong is the global gravitational instability, which arises when the disc mass is of order 0.1 of the mass of the central star and has a characteristic spatial scale much greater than the discs vertical scale-height. In this paper we use three-dimensional numerical hydrodynamics to study the development of gravitational instabilities in a disc which is embedded in a dense, gaseous envelope. We find that global gravitational instabilities are the dominant mode of angular momentum transport in the disc with infall, in contrast to otherwise identical isolated discs. The accretion torques created by low-order, global modes of the gravitational instability in a disc subject to infall are larger by a factor of several than an isolated disc of the same mass. We show that this global gravitational instability is driven by the strong vertical shear at the interface between the disc and the envelope, and suggest that this process may be an important means of driving accretion on to young stars.
We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $sim$1.5$times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.
In recent years there has been a growing interest in studying giant molecular filaments (GMFs), which are extremely elongated (> 100pc in length) giant molecular clouds (GMCs). They are often seen as inter-arm features in external spiral galaxies, bu t have been tentatively associated with spiral arms when viewed in the Milky Way. In this paper, we study the time evolution of GMFs in a high-resolution section of a spiral galaxy simulation, and their link with spiral arm GMCs and star formation, over a period of 11Myrs. The GMFs generally survive the inter-arm passage, although they are subject to a number of processes (e.g. star formation, stellar feedback and differential rotation) which can break the giant filamentary structure into smaller sections. The GMFs are not gravitationally bound clouds as a whole, but are, to some extent, confined by external pressure. Once they reach the spiral arms, the GMFs tend to evolve into more substructured spiral arm GMCs, suggesting that GMFs may be precursors to arm GMCs. Here, they become incorporated into the more complex and almost continuum molecular medium that makes up the gaseous spiral arm. Instead of retaining a clear filamentary shape, their shapes are distorted both by their climb up the spiral potential and their interaction with the gas within the spiral arm. The GMFs do tend to become aligned with the spiral arms just before they enter them (when they reach the minimum of the spiral potential), which could account for the observations of GMFs in the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا