ﻻ يوجد ملخص باللغة العربية
Galaxy clusters are expected to form hierarchically in a LCDM universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass halos. Galaxy clusters assemble late, doubling their masses since z~0.5, and so the outer regions of clusters should be replete with infalling group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters at z~0.2, identifying 39 X-ray groups that have been spectroscopically confirmed to lie at the cluster redshift. These groups have mass estimates in the range 2x10^13-7x10^14Msun, and group-to-cluster mass ratios as low as 0.02. The comoving number density of X-ray groups in the infall regions is ~25x higher than that seen for isolated X-ray groups from the XXL survey. The average mass per cluster contained within these X-ray groups is 2.2x10^14Msun, or 19% of the mass within the primary cluster itself. We estimate that ~10^15Msun clusters increase their masses by 16% between z=0.223 and the present day due to the accretion of groups with M200>10^13.2Msun. This represents about half of the expected mass growth rate of clusters at these late epochs. The other half is likely to come from smooth accretion of matter not bound in halos. The mass function of the infalling X-ray groups appears significantly top-heavy with respect to that of field X-ray systems, consistent with expectations from numerical simulations, and the basic consequences of collapsed massive dark matter halos being biased tracers of the underlying large-scale density distribution.
Growth of the structure in the Universe manifest as accretion flows of galaxies onto groups and clusters. Thus, the present day properties of groups and their member galaxies are influenced by the characteristics of this continuous infall pattern. Se
We present a study of the distribution of X-ray AGN in a representative sample of 26 massive clusters at 0.15<z<0.30, combining Chandra observations with highly complete spectroscopy of cluster members down to M_K*+2. In total we identify 48 X-ray AG
We aim to determine the intrinsic variety, at a given mass, of the properties of the intracluster medium in clusters of galaxies. This requires a cluster sample selected independently of the intracluster medium content for which reliable masses and s
We present a weak-lensing analysis of X-ray galaxy groups and clusters selected from the XMM-XXL survey using the first-year data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program. Our joint weak-lensing and X-ray analysis focuses on 136 spec
We perform statistical analyses to study the infall of galaxies onto groups and clusters in the nearby Universe. The study is based on the UZC and SSRS2 group catalogs and peculiar velocity samples. We find a clear signature of infall of galaxies ont