ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for new Galactic microquasars

92   0   0.0 ( 0 )
 نشر من قبل Gregory Tsarevsky
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. S. Tsarevsky




اسأل ChatGPT حول البحث

A complete sample of bright ROSAT sources with hard XRB-like spectra in the Galactic Plane (|b| < 15 deg.) has been tentatively identified with radio sources in the GB6/PMN/NVSS surveys, and subsequently observed with the Australia Telescope Compact Array and the Very Large Array. Most of them are unresolved at the sub-arcsec scale and have flat or inverted spectra. Precise radio coordinates have made unambiguous optical identifications possible, which, after the removal of galaxies, yielded a final list of 40 microquasar candidates. They are successfully going through the moderate dispersion spectroscopy by the 4-m telescope of the Anglo-Australian Observatory. Our goal is to obtain evidence for a characteristic accreting behaviour and establish binarity, thence permitting actual microquasar classification. VLBI observations of the brightest candidates are also underway. We expect some of these objects could be QSOs, or radio galaxies, or cataclysmic variables. However, this would be a valuable by-product of the proposed program. Photometry of these objects dedicated to find possible eclipses and, also, characteristic accreting disc driven flares.



قيم البحث

اقرأ أيضاً

93 - M. Ribo 2004
We present here the results of a search for new microquasars at low galactic latitudes, based on a cross-identification between the ROSAT all sky Bright Source Catalog (RBSC) and the NRAO VLA Sky Survey (NVSS) and follow-up observations. The results obtained up to now suggest that persistent/silent microquasars such as LS 5039 are rare objects in our Galaxy, and indicate that future deeper surveys, and harder than the RBSC in X-rays, will play a fundamental role in order to discover them.
Microquasars with high-mass companion stars are promising very-high-energy (VHE; 0.1-100 TeV) gamma-ray emitters, but their behaviors above 10 TeV are poorly known. Using the High Altitude Water Cherenkov (HAWC) observatory, we search for excess gamm a-ray emission coincident with the positions of known high-mass microquasars (HMMQs). No significant emission is observed for LS 5039, Cygnus X-1, Cygnus X-3, and SS 433 with 1,523 days of HAWC data. We set the most stringent limit above 10 TeV obtained to date on each individual source. Under the assumption that HMMQs produce gamma rays via a common mechanism, we have performed source-stacking searches, considering two different scenarios: I) gamma-ray luminosity is a fraction $epsilon_gamma$ of the microquasar jet luminosity, and II) very-high-energy gamma rays are produced by relativistic electrons up-scattering the radiation field of the companion star in a magnetic field $B$. We obtain $epsilon_gamma < 5.4times 10^{-6}$ for scenario I, which tightly constrains models that suggest observable high-energy neutrino emission by HMMQs. In the case of scenario II, the non-detection of VHE gamma rays yields a strong magnetic field, which challenges synchrotron radiation as the dominant mechanism of the microquasar emission between 10 keV and 10 MeV.
75 - M. Yoshimura , N. Sasao 2017
An appealing candidate of the galactic dark matter is the axion, which was postulated to solve the strong CP (Charge-conjugation Parity) violation problem in the standard particle theory. A new experimental method is proposed to determine the axion m ass. The method uses collectively and coherently excited atoms or molecules, the trigger laser inducing galactic axion absorption along with signal photon emission to be detected.
Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. Since none of the searches has produced a statistically significant signal, upper limits on the neutrino fluences are derived and compared to the predictions from theoretical models.
230 - Gustavo Romero 2016
Collimated outflows (jets) appear to be a ubiquitous phenomenon associated with the accretion of material onto a compact object. Despite this ubiquity, many fundamental physics aspects of jets are still poorly understood and constrained. These includ e the mechanism of launching and accelerating jets, the connection between these processes and the nature of the accretion flow, and the role of magnetic fields; the physics responsible for the collimation of jets over tens of thousands to even millions of gravitational radii of the central accreting object; the matter content of jets; the location of the region(s) accelerating particles to TeV (possibly even PeV and EeV) energies (as evidenced by gamma-ray emission observed from many jet sources) and the physical processes responsible for this particle acceleration; the radiative processes giving rise to the observed multi-wavelength emission; and the topology of magnetic fields and their role in the jet collimation and particle acceleration processes. This chapter reviews the main knowns and unknowns in our current understanding of relativistic jets, in the context of the main model ingredients for Galactic and extragalactic jet sources. It discusses aspects specific to active Galactic nuclei (especially blazars) and microquasars, and then presents a comparative discussion of similarities and differences between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا