ترغب بنشر مسار تعليمي؟ اضغط هنا

HAWC Search for High-Mass Microquasars

301   0   0.0 ( 0 )
 نشر من قبل Chang Dong Rho
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Microquasars with high-mass companion stars are promising very-high-energy (VHE; 0.1-100 TeV) gamma-ray emitters, but their behaviors above 10 TeV are poorly known. Using the High Altitude Water Cherenkov (HAWC) observatory, we search for excess gamma-ray emission coincident with the positions of known high-mass microquasars (HMMQs). No significant emission is observed for LS 5039, Cygnus X-1, Cygnus X-3, and SS 433 with 1,523 days of HAWC data. We set the most stringent limit above 10 TeV obtained to date on each individual source. Under the assumption that HMMQs produce gamma rays via a common mechanism, we have performed source-stacking searches, considering two different scenarios: I) gamma-ray luminosity is a fraction $epsilon_gamma$ of the microquasar jet luminosity, and II) very-high-energy gamma rays are produced by relativistic electrons up-scattering the radiation field of the companion star in a magnetic field $B$. We obtain $epsilon_gamma < 5.4times 10^{-6}$ for scenario I, which tightly constrains models that suggest observable high-energy neutrino emission by HMMQs. In the case of scenario II, the non-detection of VHE gamma rays yields a strong magnetic field, which challenges synchrotron radiation as the dominant mechanism of the microquasar emission between 10 keV and 10 MeV.



قيم البحث

اقرأ أيضاً

High-mass microquasars (HMMQs) are powerful particle accelerators, but their mechanism of the high-energy emission is poorly understood. To date, only a handful of these particle engines have ever been observed to emit gamma-ray photons and are thus potential TeV gamma-ray emitters. In this work, we study four HMMQs, namely, LS 5039, Cyg X-1, Cyg X-3, and SS 433 using the data from the High Altitude Water Cherenkov (HAWC) observatory. We perform time dependent analyses on each HMMQ to look for any periodic variations in their flux. We produce light curves using the HAWC daily maps from which we generate Lomb-Scargle periodograms. By analysing the significance of the periodogram peaks, we assess whether or not HAWC is sensitive to orbitally modulating TeV gamma-ray flux in the four HMMQs.
60 - I.F. Mirabel 2019
Theoretical models and observations suggest that primordial Stellar Black Holes (Pop-III-BHs) were prolifically formed in HMXBs, which are powerful relativistic jet sources of synchrotron radiation called Microquasars (MQs). Large populations of BH -HMXB-MQs at cosmic dawn produce a smooth synchrotron cosmic radio background (CRB) that could account for the excess amplitude of atomic hydrogen absorption at z~17, recently reported by EDGES. BH-HMXB-MQs at cosmic dawn precede supernovae, neutron stars and dust. BH-HMXB-MQs promptly inject hard X-rays and relativistic jets into the IGM, which overtake the slower expanding HII regions ionized by progenitor Pop-III stars, heating and partially ionizing the IGM over larger distance scales. BH-HMXBs are channels for the formation of Binary-Black-Holes (BBHs). The large masses of BBHs detected by gravitational waves, relative to the masses of BHs detected by X-rays, and the high rates of BBH-mergers, are consistent with high formation rates of BH-HMXBs and BBHs in the early universe.
The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.
105 - Joshua Wood 2018
A new ground-based wide-field extensive air shower array known as the High-Altitude Water Cherenkov (HAWC) Observatory promises a new window to monitoring the $sim$100 GeV gamma-ray sky with the potential for detecting a high energy spectral cutoff i n gamma-ray bursts (GRBs). It represents a roughly 15 times sensitivity gain over the previous generation of wide-field gamma-ray air shower instruments and is able to detect the Crab Nebula at high significance ($>$5 $sigma$) with each daily transit. Its wide field-of-view ($sim$2 sr) and $>$95% uptime make it an ideal instrument for detecting GRB emission at $sim$100 GeV with an expectation for observing $sim$1 GRB per year based on existing measurements of GRB emission. An all-sky, self-triggered search for VHE emission produced by GRBs with HAWC has been developed. We present the results of this search on three characteristic GRB emission timescales, 0.2 seconds, 1 second, and 10 seconds, in the first year of the fully-populated HAWC detector which is the most sensitive dataset to date. No significant detections were found, allowing us to place upper limits on the rate of GRBs containing appreciable emission in the $sim$100 GeV band. These constraints exclude previously unexamined parameter space.
We present a search of very high energy gamma-ray emission from the Northern $textit{Fermi}$ Bubble region using data collected with the High Altitude Water Cherenkov (HAWC) gamma-ray observatory. The size of the data set is 290 days. No significant excess is observed in the Northern $textit{Fermi}$ Bubble region, hence upper limits above $1,text{TeV}$ are calculated. The upper limits are between $3times 10^{-7},text{GeV}, text{cm}^{-2}, text{s}^{-1},text{sr}^{-1}$ and $4times 10^{-8},text{GeV},text{cm}^{-2},text{s}^{-1},text{sr}^{-1}$. The upper limits disfavor a proton injection spectrum that extends beyond $100,text{TeV}$ without being suppressed. They also disfavor a hadronic injection spectrum derived from neutrino measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا