ترغب بنشر مسار تعليمي؟ اضغط هنا

New method of galactic axion search

76   0   0.0 ( 0 )
 نشر من قبل Motohiko Yoshimura
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An appealing candidate of the galactic dark matter is the axion, which was postulated to solve the strong CP (Charge-conjugation Parity) violation problem in the standard particle theory. A new experimental method is proposed to determine the axion mass. The method uses collectively and coherently excited atoms or molecules, the trigger laser inducing galactic axion absorption along with signal photon emission to be detected.

قيم البحث

اقرأ أيضاً

132 - Ariel Arza , Pierre Sikivie 2019
Electromagnetic radiation with angular frequency equal to half the axion mass stimulates the decay of cold dark matter axions and produces an echo, i.e. faint electromagnetic radiation traveling in the opposite direction. We propose to search for axi on dark matter by sending out to space a powerful beam of microwave radiation and listening for its echo. We estimate the sensitivity of this technique in the isothermal and caustic ring models of the Milky Way halo, and find it to be a promising approach to axion, or axion-like, dark matter detection.
The axion is an intriguing dark matter candidate emerging from the Peccei-Quinn solution to the strong CP problem. Current experimental searches for axion dark matter focus on the axion mass range below 40 $mu$eV. However, if the Peccei-Quinn symmetr y is restored after inflation the observed dark matter density points to an axion mass around 100 $mu$eV. A new project based on axion-photon conversion at the transition between different dielectric media is presented. By using $sim 80$ dielectric discs, the emitted power could be enhanced by a factor of $sim 10^5$ over that from a single mirror (flat dish antenna). Within a 10 T magnetic field, this could be enough to detect $sim 100 mu$eV axions with HEMT linear amplifiers. The design for an experiment is proposed. Results from noise, transmissivity and reflectivity measurements obtained in a prototype setup are presented. The expected sensitivity is shown.
Aim of the QUAX (QUaerere AXion) proposal is to exploit the interaction of cosmological axions with the spin of electrons in a magnetized sample. Their effect is equivalent to the application of an oscillating rf field with frequency and amplitude wh ich are fixed by axion mass and coupling constant, respectively. The rf receiver module of the QUAX detector consists of magnetized samples with the Larmor resonance frequency tuned to the axion mass by a polarizing static magnetic field. The interaction of electrons with the axion-equivalent rf field produces oscillations in the total magnetization of the samples. To amplify such a tiny field, a pump field at the same frequency is applied in a direction orthogonal to the polarizing field. The induced oscillatory magnetization along the polarizing field is measured by a SQUID amplifier operated at its quantum noise level.
We point out that chameleon field theories might reveal themselves as an afterglow effect in axion-like particle search experiments due to chameleon-photon conversion in a magnetic field. We estimate the parameter space which is accessible by current ly available technology and find that afterglow experiments could constrain this parameter space in a way complementary to gravitational and Casimir force experiments.In addition, one could reach photon-chameleon couplings which are beyond the sensitivity of common laser polarization experiments. We also sketch the idea of a Fabry-Perot cavity with chameleons which could increase the experimental sensitivity significantly.
The proposed LDMX experiment would provide roughly a meter-long region of instrumented tracking and calorimetry that acts as a beam stop for multi-GeV electrons in which each electron is tagged and its evolution measured. This would offer an unpreced ented opportunity to access both collider-invisible and ultra-short lifetime decays of new particles produced in electron (or muon)-nuclear fixed-target collisions. In this paper, we show that the missing momentum channel and displaced decay signals in such an experiment could provide world-leading sensitivity to sub-GeV dark matter, millicharged particles, and visibly or invisibly decaying axions, scalars, dark photons, and a range of other new physics scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا