ﻻ يوجد ملخص باللغة العربية
We present the analysis of 65 hours of high speed photometric observations of HD 12098 taken from State Observatory, Naini Tal and Gurushikhar Observatory, Mt.Abu on sixteen nights spanning from November 1999 to November 2000. HD 12098 is the first rapidly oscillating Ap star discovered from the `Naini Tal-Cape survey for northern hemisphere roAp stars. It is the 32nd in the complete list. HD 12098 exhibits one predominant mode of oscillation at nu_1 = 2.1738 mHz. The second-most significant frequency in our data is at nu_2 = 2.1641 mHz with a 1 cycle/day alias ambiguity. We argue that nu_2 is a rotational sidelobe of nu_1, rather than an independent pulsation mode. Evidence for the presence of two other frequencies at 2.1807 and 2.3056 mHz is also presented.
Precise time-series photometry with the MOST satellite has led to identification of 10 pulsation frequencies in the rapidly oscillating Ap (roAp) star HD 134214. We have fitted the observed frequencies with theoretical frequencies of axisymmetric mod
We analyse the fifth roAp star reported in the Kepler field, KIC 7582608, discovered with the SuperWASP project. The object shows a high frequency pulsation at 181.7324 d$^{-1}$ (P=7.9 min) with an amplitude of 1.45 mmag, and low frequency rotational
We report the frequency analysis of a known roAp star, HD 86181 (TIC 469246567), with new inferences from TESS data. We derive the rotation frequency to be $ u_{rot}$ = 0.48753 $pm$ 0.00001d$^{-1}$. The pulsation frequency spectrum is rich, consistin
Chemically peculiar (CP) stars with a measurable magnetic field comprise the group of mCP stars. The pulsating members define the subgroup of rapidly oscillating Ap (roAp) stars, of which Alpha Circini is the brightest member. Hence, Alpha Circini al
We report on the analysis of high-precision space-based photometry of the roAp (rapidly oscillating Ap) stars HD 9289, HD 99563, and HD134214. All three stars were observed by the MOST satellite for more than 25 days, allowing unprecedented views of