ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of multiple p-mode pulsation frequencies in the roAp star, HD 86181

86   0   0.0 ( 0 )
 نشر من قبل Fangfei Shi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the frequency analysis of a known roAp star, HD 86181 (TIC 469246567), with new inferences from TESS data. We derive the rotation frequency to be $ u_{rot}$ = 0.48753 $pm$ 0.00001d$^{-1}$. The pulsation frequency spectrum is rich, consisting of two doublets and one quintuplet, which we interpret to be oblique pulsation multiplets from consecutive, high-overtone dipole, quadrupole and dipole modes. The central frequency of the quintuplet is 232.7701d$^{-1}$ (2.694 mHz). The phases of the sidelobes, the pulsation phase modulation, and a spherical harmonic decomposition all show that the quadrupole mode is distorted. Following the oblique pulsator model, we calculate the rotation inclination, i, and magnetic obliquity, $beta$, of this star, which provide detailed information about the pulsation geometry. The i and $beta$ derived from the best fit of the pulsation amplitude and phase modulation to a theoretical model, including the magnetic field effect, slightly differ from those calculated for a pure quadrupole, indicating the contributions from l = 4, 6, 8, ... are small. Non-adiabatic models with different envelope convection conditions and physics configurations were considered for this star. It is shown that models with envelope convection almost fully suppressed can explain the excitation at the observed pulsation frequencies.



قيم البحث

اقرأ أيضاً

Precise time-series photometry with the MOST satellite has led to identification of 10 pulsation frequencies in the rapidly oscillating Ap (roAp) star HD 134214. We have fitted the observed frequencies with theoretical frequencies of axisymmetric mod es in a grid of stellar models with dipole magnetic fields. We find that, among models with a standard composition of $(X,Z) = (0.70,0.02)$ and with suppressed convection, eigenfrequencies of a $1.65,{rm M}_odot$ model with $log T_{rm eff} = 3.858$ and a polar magnetic field strength of 4.1kG agree best with the observed frequencies. We identify the observed pulsation frequency with the largest amplitude as a deformed dipole ($ell = 1$) mode, and the four next-largest-amplitude frequencies as deformed $ell = 2$ modes. These modes have a radial quasi-node in the outermost atmospheric layers ($tau sim 10^{-3}$). Although the model frequencies agree roughly with observed ones, they are all above the acoustic cut-off frequency for the model atmosphere and hence are predicted to be damped. The excitation mechanism for the pulsations of HD 134214 is not clear, but further investigation of these modes may be a probe of the atmospheric structure in this magnetic chemically peculiar star.
240 - D.W. Kurtz , M.S. Cunha , H. Saio 2011
We have discovered a new rapidly oscillating Ap star among the Kepler Mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 min and 18.1 min, indicating that the star is near the terminal age main sequence. The principal pulsation mode is an oblique dipole mode that shows a rotationally split frequency septuplet that provides information on the geometry of the mode. The secondary mode also appears to be a dipole mode with a rotationally split triplet, but we are able to show within the improved oblique pulsator model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 microHz, which we model as the large separation. The star is an alpha^2 CVn spotted magnetic variable that shows a complex rotational light variation with a period of Prot = 5.68459 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period; i.e. a subharmonic frequency of $ u_{rm rot}/2$. We propose that this and other subharmonics are the first observed manifestation of torsional modes in an roAp star. From high resolution spectra we determine Teff = 7400 K, log g = 3.6 and v sin i = 21 km/s. We have found a magnetic pulsation model with fundamental parameters close to these values that reproduces the rotational variations of the two obliquely pulsating modes with different pulsation axes. The star shows overabundances of the rare earth elements, but these are not as extreme as most other roAp stars. The spectrum is variable with rotation, indicating surface abundance patches.
We report on the analysis of high-precision space-based photometry of the roAp (rapidly oscillating Ap) stars HD 9289, HD 99563, and HD134214. All three stars were observed by the MOST satellite for more than 25 days, allowing unprecedented views of their pulsation. We find previously unknown candidate frequencies in all three stars. We establish the rotation period of HD 9289 (8.5 d) for the first time and show that the star is pulsating in two modes that show different mode geometries. We present a detailed analysis of HD 99563s mode multiplet and find a new candidate frequency which appears independent of the previously known mode. Finally, we report on 11 detected pulsation frequencies in HD 134214, 9 of which were never before detected in photometry, and 3 of which are completely new detections. Thanks to the unprecedentedly small frequency uncertainties, the p-mode spectrum of HD 134214 can be seen to have a well-defined large frequency spacing similar to the well-studied roAp star HD 24712 (HR 1217).
Solar twins have been a focus of attention for more than a decade, because their structure is extremely close to that of the Sun. Today, thanks to high-precision spectrometers, it is possible to use asteroseismology to probe their interiors. Our goal is to use time series obtained from the HARPS spectrometer to extract the oscillation frequencies of 18 Sco, the brightest solar twin. We used the tools of spectral analysis to estimate these quantities. We estimate 52 frequencies using an MCMC algorithm. After examination of their probability densities and comparison with results from direct MAP optimization, we obtain a minimal set of 21 reliable modes. The identification of each pulsation mode is straightforwardly accomplished by comparing to the well-established solar pulsation modes. We also derived some basic seismic indicators using these values. These results offer a good basis to start a detailed seismic analysis of 18 Sco using stellar models.
Spectroscopy is a powerful tool for detecting variability in the rapidly oscillating Ap (roAp) stars. The technique requires short integrations times and high resolution, and so is limited to only a few telescopes and instruments. To test the capabil ities of the High Resolution Spectrograph (HRS) at the Southern African Large Telescope (SALT) for the study of pulsations in roAp stars, we collected 2.45 hr of high-resolution data of the well studied roAp star $alpha$ Cir in a previously unused instrument configuration. We extracted radial velocity measurements using different rare earth elements, and the core of H$_alpha$, via the cross correlation method. We performed the same analysis with a set of $alpha$ Cir data collected with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph to provide a benchmark for our SALT HRS test. We measured significant radial velocity variations in the HRS data and show that our results are in excellent agreement between the two data sets, with similar signal-to-noise ratio detections of the principal pulsation mode. With the HRS data, we report the detection of a second mode, showing the instrument is capable of detecting multiple and low-amplitude signals in a short observing window. We concluded that SALT HRS is well-suited for characterising pulsations in Ap stars, opening a new science window for the telescope. Although our analysis focused on roAp stars, the fundamental results are applicable to other areas of astrophysics where high temporal and spectral resolution observations are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا