ترغب بنشر مسار تعليمي؟ اضغط هنا

MOST observations of the roAp stars HD 9289, HD 99563, and HD 134214

154   0   0.0 ( 0 )
 نشر من قبل Michael Gruberbauer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the analysis of high-precision space-based photometry of the roAp (rapidly oscillating Ap) stars HD 9289, HD 99563, and HD134214. All three stars were observed by the MOST satellite for more than 25 days, allowing unprecedented views of their pulsation. We find previously unknown candidate frequencies in all three stars. We establish the rotation period of HD 9289 (8.5 d) for the first time and show that the star is pulsating in two modes that show different mode geometries. We present a detailed analysis of HD 99563s mode multiplet and find a new candidate frequency which appears independent of the previously known mode. Finally, we report on 11 detected pulsation frequencies in HD 134214, 9 of which were never before detected in photometry, and 3 of which are completely new detections. Thanks to the unprecedentedly small frequency uncertainties, the p-mode spectrum of HD 134214 can be seen to have a well-defined large frequency spacing similar to the well-studied roAp star HD 24712 (HR 1217).

قيم البحث

اقرأ أيضاً

Precise time-series photometry with the MOST satellite has led to identification of 10 pulsation frequencies in the rapidly oscillating Ap (roAp) star HD 134214. We have fitted the observed frequencies with theoretical frequencies of axisymmetric mod es in a grid of stellar models with dipole magnetic fields. We find that, among models with a standard composition of $(X,Z) = (0.70,0.02)$ and with suppressed convection, eigenfrequencies of a $1.65,{rm M}_odot$ model with $log T_{rm eff} = 3.858$ and a polar magnetic field strength of 4.1kG agree best with the observed frequencies. We identify the observed pulsation frequency with the largest amplitude as a deformed dipole ($ell = 1$) mode, and the four next-largest-amplitude frequencies as deformed $ell = 2$ modes. These modes have a radial quasi-node in the outermost atmospheric layers ($tau sim 10^{-3}$). Although the model frequencies agree roughly with observed ones, they are all above the acoustic cut-off frequency for the model atmosphere and hence are predicted to be damped. The excitation mechanism for the pulsations of HD 134214 is not clear, but further investigation of these modes may be a probe of the atmospheric structure in this magnetic chemically peculiar star.
122 - Drisya Karinkuzhi 2018
We present elemental abundance results from high resolution spectral analysis of three nitrogen-enhanced barium stars. The analysis is based on spectra obtained with the FEROS attached to 1.52m telescope at ESO, Chile. The spectral resolution is R~48 000 and the spectral coverage spans from 3500-9000AA,. For the objects HD 51959 and HD 88035, we present the first time abundance analyses results. Although a few studies are available in literature on the object HD 121447, the results are significantly different from each other. We have therefore carried out a detailed chemical composition study for this object based on a high resolution spectrum with high S/N ratio, for a better understanding of the origin of the abundance patterns observed in this star. Stellar atmospheric parameters, the effective temperature, surface gravity, microturbulence and metallicity of the stars are determined from the LTE analysis using model atmospheres. The metallicity of HD 51959 and HD 88035 are found to be near-solar; they exhibit enhanced abundances of neutron-capture elements. HD 121447 is found to be moderately metal-poor with [Fe/H]=-0.65. While carbon is near-solar in the other two objects, HD 121447 shows carbon enhancement at a level, [C/Fe]=0.82. Neutron-capture elements are highly enhanced with [X/Fe]>2 (X: Ba, La, Pr, Nd, Sm) in this object. The alpha- and iron-peak elements show abundances very similar to field giants with the same metallicity. From kinematic analysis all the three objects are found to be members of thin disk population with a high probability of 0.99, 0.99 and 0.92 for HD 51959, HD 88035 and HD 121447 respectively.
The SDSS III APOGEE survey recently identified two new $sigma$ Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these s ystems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a $sim$0.7701 day period in each dataset, suggesting the system is amongst the faster known $sigma$ Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a $sim$0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.
109 - R. Blomme , L. Mahy , C. Catala 2011
The detection of pulsational frequencies in stellar photometry is required as input for asteroseismological modelling. The second short run (SRa02) of the CoRoT mission has provided photometric data of unprecedented quality and time-coverage for a nu mber of O-type stars. We analyse the CoRoT data corresponding to three hot O-type stars, describing the properties of their light curves and we search for pulsational frequencies, which we then compare to theoretical model predictions. We determine the amplitude spectrum of the data, using the Lomb-Scargle and a multifrequency HMM-like technique. Frequencies are extracted by prewhitening, and their significance is evaluated under the assumption that the light curve is dominated by red noise. We search for harmonics, linear combinations and regular spacings among these frequencies. We use simulations with the same time sampling as the data as a powerful tool to judge the significance of our results. From the theoretical point of view, we use the MAD non-adiabatic pulsation code to determine the expected frequencies of excited modes. A substantial number of frequencies is listed, but none can be convincingly identified as being connected to pulsations. The amplitude spectrum is dominated by red noise. Theoretical modelling shows that all three O-type stars can have excited modes but the relation between the theoretical frequencies and the observed spectrum is not obvious. The dominant red noise component in the hot O-type stars studied here clearly points to a different origin than the pulsations seen in cooler O stars. The physical cause of this red noise is unclear, but we speculate on the possibility of sub-surface convection, granulation, or stellar wind inhomogeneities being responsible.
MOST observations and model analysis of the Herbig Ae star HD 34282 (V1366 Ori) reveal {delta}-Scuti pulsations. 22 frequencies are observed, 10 of which confirm those previously identified by Amado et al. (2006), and 12 of which are newly discovered in this work. We show that the weighted-average frequency in each group fits the radial p-mode frequencies of viable models. We argue that the observed pulsation spectrum extends just to the edge to the acoustic cut-off frequency and show that this also is consistent with our best-fitting models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا