ترغب بنشر مسار تعليمي؟ اضغط هنا

The High Resolution X-ray Spectrum of SS 433 using the Chandra HETGS

135   0   0.0 ( 0 )
 نشر من قبل Herman L. Marshall
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of SS 433 using the Chandra High Energy Transmission Grating Spectrometer. Many emission lines of highly ionized elements are detected with the relativistic blue and red Doppler shifts. The lines are measurably broadened to 1700 km/s (FWHM) and the widths do not depend significantly on the characteristic emission temperature, suggesting that the emission occurs in a freely expanding region of constant collimation with opening angle of 1.23 +/- 0.06 deg. The blue shifts of lines from low temperature gas are the same as those of high temperature gas within our uncertainties, again indicating that the hottest gas we observe to emit emission lines is already at terminal velocity. Fits to the emission line fluxes give a range of temperatures in the jet from 5e6 to 1e8 K. We derive the emission measure as a function of temperature for a four component model that fits the line flux data. Using the density sensitive Si XIII triplet, the characteristic electron density is 1e14 cm^{-3}, where the gas temperature is about 1.3e7 K. Based on an adiabatic expansion model of the jet, the electron densities drop from ~2e15 to 4e13 cm^{-3} at distances of 2e10 to 2e11 cm from the apex of the jet cone. The jet mass outflow rate is 1.5e-7 Msun / yr. The kinetic power is 3.2e38 erg/s, which is x1000 larger than the unabsorbed 2-10 keV X-ray luminosity. The bremsstrahlung emission associated with the lines can account for the entire continuum; we see no direct evidence for an accretion disk. The image from zeroth order shows extended emission at a scale of ~2, aligned in the general direction of the radio jets.

قيم البحث

اقرأ أيضاً

The X-ray spectrum of the Galactic microquasar SS 433 contains a rich set of emission lines of highly ionized atoms of heavy elements whose significant Doppler shift leaves no doubt that they are produced in collimated relativistic jets of outflowing material. We have performed a systematic analysis of the high-resolution X-ray spectra obtained by the Chandra observatory to determine the parameters of the jets within the multitemperature model of their emission that self-consistently predicts the sources line and continuum spectrum. The spectrum of SS 433 at energies below 3 keV is shown to be statistically satisfactorily described by the jet emission model, while the introduction of an additional hard component is required above 3 keV. We summarize the jet parameters (bulk velocity, opening angle, kinetic luminosity, base temperature, and relative elemental abundances) derived by fitting the data below 3 keV and describe the revealed degeneracies and systematic effects due to the presence of an additional component. Using the derived parameters, we show that the hard component is compatible with the emission from the hot (up to 40 keV) extension of the visible part of the jets moderately absorbed ($N_H sim 2 times 10^{23}$ cm$^{-2}$) in the cold-wind material. The combined X-ray emission model constructed in this way allows the broadband spectrum of SS 433 to be described self-consistently.
155 - H. L. Marshall 2001
We present observations of the Rapid Burster (RB, also known as MXB 1730-335) using the Chandra High Energy Transmission Grating Spectrometer. The average interval between type II (accretion) bursts was about 40 s. There was one type I (thermonuclear flash) burst and about 20 mini-bursts which are probably type II bursts whose peak flux is 10-40% of the average peak flux of the other type II bursts. The time averaged spectra of the type II bursts are well fit by a blackbody with a temperature of kT = 1.6 keV, a radius of 8.9 km for a distance of 8.6 kpc, and an interstellar column density of 1.7e22 per sq. cm. No narrow emission or absorption lines were clearly detected. The 3 sigma upper limits to the equivalent widths of any features are < 10 eV in the 1.1-7.0 keV band and as small as 1.5 eV near 1.7 keV. We suggest that Comptonization destroys absorption features such as the resonance line of Fe XXVI.
51 - Laura A. Lopez 2006
We test the physical model of the relativistic jets in the galactic X-ray binary SS 433 proposed in our previous paper using additional observations from the Chandra High Energy Transmission Grating Spectrometer. These observations sample two new orb ital/precessional phase combinations. In the observation near orbital phase zero, the H- and He-like Fe lines from both receding and approaching jets are comparably strong and unocculted while the He-like Si line of the receding jet is significantly weaker than that of the approaching jet. This condition may imply the cooler parts of the receding jet are eclipsed by the companion. The X-ray spectrum from this observation has broader emission lines than obtained in Paper I that may arise from the divergence of a conical outflow or from Doppler shift variations during the observation. Using recent optical results, along with the length of the unobscured portion of the receding jet assuming adiabatic cooling, we calculate the radius of the companion to be 9.6+/-1.0 R_sun, about one third of the Roche lobe radius. For a main sequence star, this corresponds to a companion mass of 35+/-7 M_sun, giving a primary source mass of 20+/-5 M_sun. If our model is correct, this calculation indicates the compact object is a black hole, and accretion occurs through a wind process. In a subsequent paper, we will examine the validity of the adiabatic cooling model of the jets and test the mode of line broadening.
75 - S. Migliari 2005
We present the X-ray images of all the available Chandra observations of the galactic jet source SS 433. We have studied the morphology of the X-ray images and inspected the evolution of the arcsec X-ray jets, recently found to be manifestations of i n situ reheating of the relativistic gas downstream in the jets. The Chandra images reveal that the arcsec X-ray jets are not steady long term structures; the structure varies, indicating that the reheating processes have no preference for a particular precession phase or distance from the binary core. Three observations made within about five days in May 2001, and a 60 ks observation made in July 2003 show that the variability of the jets can be very rapid, from timescales of days to (possibly) hours. The three May 2001 images show two resolved knots in the east jet getting brighter one after the other, suggesting that a common phenomenon might be at the origin of the sequential reheatings of the knots. We discuss possible scenarios and propose a model to interpret these brightenings in terms of a propagating shock wave, revealing a second, faster outflow in the jet.
In quiescence, Sgr A* is surprisingly dim, shining 100,000 times less than expected for its environment. This problem has motivated a host of theoretical models to explain radiatively inefficient accretion flows (RIAFs). The Chandra Galactic Center ( GC) X-ray Visionary Program obtained approximately 3 Ms (one month) of Chandra HETG data, offering the only opportunity to examine the quiescent X-ray emission of Sgr A* with high resolution spectroscopy. Utilizing custom background regions and filters for removing overlapping point sources, this work provides the first ever look at stacked HETG spectra of Sgr A*. We model the background datasets with a cubic spline and fit the unbinned Sgr A* spectra with a simple parametric model of a power law plus Gaussian lines under the effects of interstellar extinction. We detect a strong 6.7 keV iron emission line in the HEG spectra and a 3.1 keV emission line in the MEG spectra. In all cases, the line centroids and equivalent widths are consistent with those measured from low-resolution CCD spectra. An examination of the unbinned, stacked HEG+/-1 spectrum reveals fine structure in the iron line complex. In addition to resolving the resonant and forbidden lines from He-like iron, there are apparent emission features arising with higher statistical significance at lower energy, potentially associated with FeXX-XXIV ions in a ~1 keV plasma arising near the Bondi radius of Sgr A*. With this work, we release the cleaned and stacked Sgr A* and background HETG spectra to the public as a special legacy dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا