ﻻ يوجد ملخص باللغة العربية
We test the physical model of the relativistic jets in the galactic X-ray binary SS 433 proposed in our previous paper using additional observations from the Chandra High Energy Transmission Grating Spectrometer. These observations sample two new orbital/precessional phase combinations. In the observation near orbital phase zero, the H- and He-like Fe lines from both receding and approaching jets are comparably strong and unocculted while the He-like Si line of the receding jet is significantly weaker than that of the approaching jet. This condition may imply the cooler parts of the receding jet are eclipsed by the companion. The X-ray spectrum from this observation has broader emission lines than obtained in Paper I that may arise from the divergence of a conical outflow or from Doppler shift variations during the observation. Using recent optical results, along with the length of the unobscured portion of the receding jet assuming adiabatic cooling, we calculate the radius of the companion to be 9.6+/-1.0 R_sun, about one third of the Roche lobe radius. For a main sequence star, this corresponds to a companion mass of 35+/-7 M_sun, giving a primary source mass of 20+/-5 M_sun. If our model is correct, this calculation indicates the compact object is a black hole, and accretion occurs through a wind process. In a subsequent paper, we will examine the validity of the adiabatic cooling model of the jets and test the mode of line broadening.
We present observations of SS 433 using the Chandra High Energy Transmission Grating Spectrometer. Many emission lines of highly ionized elements are detected with the relativistic blue and red Doppler shifts. The lines are measurably broadened to 17
We present mid-infrared spectra of the microquasar SS 433 obtained with the Infrared Space Observatory (spectroscopic mode of ISOPHOT) and compare them to the spectra of four Wolf-Rayet stars. The mid-infrared spectrum of SS 433 shows mainly HI and H
We present the X-ray images of all the available Chandra observations of the galactic jet source SS 433. We have studied the morphology of the X-ray images and inspected the evolution of the arcsec X-ray jets, recently found to be manifestations of i
We present a study of the mass transfer and wind outflows of SS433, focusing on the so-called stationary lines based on archival high and low resolution optical spectra, and new optical multifilter polarimetry and low resolution optical spectra spann
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compati