ترغب بنشر مسار تعليمي؟ اضغط هنا

Diagnostics of Parameters for the X-ray Jets of SS 433 from High-Resolution Chandra Spectroscopy

179   0   0.0 ( 0 )
 نشر من قبل Pavel Medvedev Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The X-ray spectrum of the Galactic microquasar SS 433 contains a rich set of emission lines of highly ionized atoms of heavy elements whose significant Doppler shift leaves no doubt that they are produced in collimated relativistic jets of outflowing material. We have performed a systematic analysis of the high-resolution X-ray spectra obtained by the Chandra observatory to determine the parameters of the jets within the multitemperature model of their emission that self-consistently predicts the sources line and continuum spectrum. The spectrum of SS 433 at energies below 3 keV is shown to be statistically satisfactorily described by the jet emission model, while the introduction of an additional hard component is required above 3 keV. We summarize the jet parameters (bulk velocity, opening angle, kinetic luminosity, base temperature, and relative elemental abundances) derived by fitting the data below 3 keV and describe the revealed degeneracies and systematic effects due to the presence of an additional component. Using the derived parameters, we show that the hard component is compatible with the emission from the hot (up to 40 keV) extension of the visible part of the jets moderately absorbed ($N_H sim 2 times 10^{23}$ cm$^{-2}$) in the cold-wind material. The combined X-ray emission model constructed in this way allows the broadband spectrum of SS 433 to be described self-consistently.

قيم البحث

اقرأ أيضاً

139 - Pol Bordas 2020
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compati ble with the precession period of the binary system, of about 160 days. The location of this variable component is not compatible with the location of SS 433 jets. To explain the observed phenomenology, a scenario based on the illumination of dense gas clouds by relativistic protons accelerated at the interface of the accretion disk envelope has been proposed. Energetic arguments strongly constrain this scenario, however, as it requires an unknown mechanism capable to periodically channel a large fraction of SS 433s kinetic energy towards an emitter located 36 parsec away from the central binary system.
We present observations of SS 433 using the Chandra High Energy Transmission Grating Spectrometer. Many emission lines of highly ionized elements are detected with the relativistic blue and red Doppler shifts. The lines are measurably broadened to 17 00 km/s (FWHM) and the widths do not depend significantly on the characteristic emission temperature, suggesting that the emission occurs in a freely expanding region of constant collimation with opening angle of 1.23 +/- 0.06 deg. The blue shifts of lines from low temperature gas are the same as those of high temperature gas within our uncertainties, again indicating that the hottest gas we observe to emit emission lines is already at terminal velocity. Fits to the emission line fluxes give a range of temperatures in the jet from 5e6 to 1e8 K. We derive the emission measure as a function of temperature for a four component model that fits the line flux data. Using the density sensitive Si XIII triplet, the characteristic electron density is 1e14 cm^{-3}, where the gas temperature is about 1.3e7 K. Based on an adiabatic expansion model of the jet, the electron densities drop from ~2e15 to 4e13 cm^{-3} at distances of 2e10 to 2e11 cm from the apex of the jet cone. The jet mass outflow rate is 1.5e-7 Msun / yr. The kinetic power is 3.2e38 erg/s, which is x1000 larger than the unabsorbed 2-10 keV X-ray luminosity. The bremsstrahlung emission associated with the lines can account for the entire continuum; we see no direct evidence for an accretion disk. The image from zeroth order shows extended emission at a scale of ~2, aligned in the general direction of the radio jets.
75 - S. Migliari 2005
We present the X-ray images of all the available Chandra observations of the galactic jet source SS 433. We have studied the morphology of the X-ray images and inspected the evolution of the arcsec X-ray jets, recently found to be manifestations of i n situ reheating of the relativistic gas downstream in the jets. The Chandra images reveal that the arcsec X-ray jets are not steady long term structures; the structure varies, indicating that the reheating processes have no preference for a particular precession phase or distance from the binary core. Three observations made within about five days in May 2001, and a 60 ks observation made in July 2003 show that the variability of the jets can be very rapid, from timescales of days to (possibly) hours. The three May 2001 images show two resolved knots in the east jet getting brighter one after the other, suggesting that a common phenomenon might be at the origin of the sequential reheatings of the knots. We discuss possible scenarios and propose a model to interpret these brightenings in terms of a propagating shock wave, revealing a second, faster outflow in the jet.
473 - I. Khabibullin , S. Sazonov 2019
We calculate X-ray signal that should arise due to reflection of the putative collimated X-ray emission of the Galactic supercritical accretor SS 433 on molecular clouds in its vicinity. The molecular gas distribution in the region of interest has be en constructed based on the data of the BU-FCRAO GRS in $^{13}$CO $J=1rightarrow0$ emission line, while the collimated emission was assumed to be aligned with the direction of the relativistic jets, which are continuously launched by the system. We consider all the available $Chandra$ observations covering the regions possibly containing the reflection signal and put constraints on the apparent face-on luminosity of SS 433 above 4 keV. No signatures of the predicted signal have been found in the analysed regions down to a 4-8 keV surface brightness level of $sim 10^{-11}$ erg/s/cm$^2$/deg$^2$. This translates into the limit on the apparent face-on 2-10 keV luminosity of SS 433 $L_{X,2-10}lesssim 8times10^{38}$ erg/s, provided that the considered clouds do fall inside the illumination cone of the collimated emission. This, however, might not be the case due to persisting uncertainty in the line-of-sight distances to SS 433 $d_{SS433}$ (4.5-5.5 kpc) and to the considered molecular clouds. For half-opening angle of the collimation cone larger than or comparable to the amplitude of the jets precession ($approx21deg$), the stringent upper limit quoted above is most relevant if $d_{SS433}<5$ kpc, provided that the kinematic distances to the considered molecular clouds are sufficiently accurate. Dropping the last assumption, a more conservative constraint is $L_{X,2-10}lesssim10^{40}$ erg/s for $d_{SS433}=4.65-4.85$ kpc (and yet worse outside this range). We conclude that SS 433 is not likely to belong to the brightest ultraluminous X-ray sources if it could be observed face-on, unless its X-ray emission is highly collimated. (Abridged)
SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of $sim0.26c$ extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is $sim10^{40}$ erg s$^{-1}$. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of $gamma$ rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV $gamma$-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of $sim16$~micro-Gauss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا