ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernova 1991T and the Value of the Hubble Constant

368   0   0.0 ( 0 )
 نشر من قبل Brad K. Gibson
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brad K. Gibson




اسأل ChatGPT حول البحث

Based upon multi-epoch Hubble Space Telescope observations, we present the discovery of sixteen high-quality Cepheid candidates in NGC 4527. Corrected for metallicity effects in the Cepheid period-luminosity relation, we derive a distance, including both random (r) and systematic (s) uncertainties, of 13.0+/-0.5(r)+/-1.2(s) Mpc. Our result is then used to provide a calibration of the peak B-, V-, and I-band luminosities of the peculiar Type Ia supernova SN 1991T, a resident of NGC 4527. Despite its documented spectroscopic peculiarities, after correction for the decline rate-luminosity correlation the corrected peak luminosity is indistinguishable from those of so-called ``normal Type Ia SNe. With now nine local calibrators at our disposal, we determine a robust value for the Hubble Constant of H_0=73+/-2(r)+/-7(s) km/s/Mpc.



قيم البحث

اقرأ أيضاً

The methodology involved in deriving the Hubble Constant via the calibration of the corrected peak luminosities of Type Ia supernovae (SNe) is reviewed. We first present a re-analysis of the Calan-Tololo (C-T) and Center for Astrophysics (CfA) Type I a SN surveys. Bivariate linear least squares and quadratic boot-strapped fits in peak apparent magnitude and light curve shape are employed to correct this heterogeneous sample of peak apparent magnitudes, resulting in an homogeneous (and excellent) secondary distance indicator: the so-called corrected peak luminosity. We next provide an empirical calibration for this corrected luminosity, using Cepheid-based distances for seven nearby spiral galaxies host to Type Ia SNe. Included in this sample is the spectroscopically peculiar SN 1991T (in NGC 4527), whose corrected peak luminosity is shown to be indistinguishable from that of so-called ``normal SNe. A robust value of the Hubble Constant is derived and shown to be H0=73+/-2(r)+/-7(s) km/s/Mpc.
We present optical and near-infrared photometry and spectroscopy of the type Ia SN 1998bu in the Leo I Group galaxy M96 (NGC 3368). The data set consists of 356 photometric measurements and 29 spectra of SN 1998bu between UT 1998 May 11 and July 15. The well-sampled light curve indicates the supernova reached maximum light in B on UT 1998 May 19.3 (JD 2450952.8 +/- 0.8) with B = 12.22 +/- 0.03 and V = 11.88 +/- 0.02. Application of a revised version of the Multicolor Light Curve Shape (MLCS) method yields an extinction toward the supernova of A_V = 0.94 +/- 0.15 mag, and indicates the supernova was of average luminosity compared to other normal type Ia supernovae. Using the HST Cepheid distance modulus to M96 (Tanvir et al. 1995) and the MLCS fit parameters for the supernova, we derive an extinction-corrected absolute magnitude for SN 1998bu at maximum, M_V = -19.42 +/- 0.22. Our independent results for this supernova are consistent with those of Suntzeff et al. (1999). Combining SN 1998bu with three other well-observed local calibrators and 42 supernovae in the Hubble flow yields a Hubble constant, H_0 = 64^{+8}_{-6} km/s/Mpc, where the error estimate incorporates possible sources of systematic uncertainty including the calibration of the Cepheid period-luminosity relation, the metallicity dependence of the Cepheid distance scale, and the distance to the LMC.
45 - A. Fisher , D. Branch , K. Hatano 1998
A parameterized supernova synthetic-spectrum code is used to study line identifications in the photospheric-phase spectra of the peculiar Type Ia SN 1991T, and to extract some constraints on the composition structure of the ejected matter. The inferr ed composition structure is not like that of any hydrodynamical model for Type Ia supernovae. Evidence that SN 1991T was overluminous for an SN Ia is presented, and it is suggested that this peculiar event probably was a substantially super-Chandrasekhar explosion that resulted from the merger of two white dwarfs.
115 - Neal Jackson 2014
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individu al astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give $H_0$ values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68km/s/Mpc and typical errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
We assess the robustness of the two highest rungs of the cosmic distance ladder for Type Ia supernovae and the determination of the Hubble-Lema^itre constant. In this analysis, we hold fixed Rung 1 as the distance to the LMC determined to 1 % using D etached Eclipsing Binary stars. For Rung 2 we analyze two methods, the TRGB and Cepheid distances for the luminosity calibration of Type Ia supernovae in nearby galaxies. For Rung 3 we analyze various modern digital supernova samples in the Hubble flow, such as the Calan-Tololo, CfA, CSP, and Supercal datasets. This metadata analysis demonstrates that the TRGB calibration yields smaller $H_0$ values than the Cepheid calibration, a direct consequence of the systematic difference in the distance moduli calibrated from these two methods. Selecting the three most independent possible methodologies/bandpasses ($B$, $V$, $J$), we obtain $H_{0}=69.9 pm 0.8$ and $H_{0} =73.5 pm 0.7$ km s$^{-1}$ Mpc$^{-1}$ from the TRGB and Cepheid calibrations, respectively. Adding in quadrature the systematic uncertainty in the TRGB and Cepheid methods of 1.1 and 1.0 km s$^{-1}$ Mpc$^{-1}$, respectively, this subset reveals a significant 2.0 $sigma$ systematic difference in the calibration of Rung 2. If Rung 1 and Rung 2 are held fixed, the different formalisms developed for standardizing the supernova peak magnitudes yield consistent results, with a standard deviation of 1.5 km s$^{-1}$ Mpc$^{-1}$, that is, Type Ia supernovae are able to anchor Rung 3 with 2 % precision. This study demonstrates that Type Ia supernovae have provided a remarkably robust calibration of R3 for over 25 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا