ﻻ يوجد ملخص باللغة العربية
The methodology involved in deriving the Hubble Constant via the calibration of the corrected peak luminosities of Type Ia supernovae (SNe) is reviewed. We first present a re-analysis of the Calan-Tololo (C-T) and Center for Astrophysics (CfA) Type Ia SN surveys. Bivariate linear least squares and quadratic boot-strapped fits in peak apparent magnitude and light curve shape are employed to correct this heterogeneous sample of peak apparent magnitudes, resulting in an homogeneous (and excellent) secondary distance indicator: the so-called corrected peak luminosity. We next provide an empirical calibration for this corrected luminosity, using Cepheid-based distances for seven nearby spiral galaxies host to Type Ia SNe. Included in this sample is the spectroscopically peculiar SN 1991T (in NGC 4527), whose corrected peak luminosity is shown to be indistinguishable from that of so-called ``normal SNe. A robust value of the Hubble Constant is derived and shown to be H0=73+/-2(r)+/-7(s) km/s/Mpc.
Type Ia supernovae (SNe) are the best standard candles available today in spite of an appreciable intrinsic variation of their luminosities at maximum phase, and of probably non-uniform progenitors. For an unbiased use of type Ia SNe as distance indi
The Calan/Tololo supernova survey has discovered ~30 Type Ia supernovae out to z~0.1. Using BVI data for these objects and nearby SNe Ia, we have shown that there exists a significant dispersion in the intrinsic luminosities of these objects. We have
In this work, we propose a cosmological model-independent and non-local method to constrain the Hubble Constant $H_0$. Inspired by the quasi cosmological model-independent and $H_0$-free properties of the `shifted Hubble diagram of HII galaxies (HIIG
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assu
Cross-filter K corrections for a sample of normal Type Ia supernovae (SNe) have been calculated for a range of epochs. With appropriate filter choices, the combined statistical and systematic K correction dispersion of the full sample lies within 0.0