ترغب بنشر مسار تعليمي؟ اضغط هنا

The value of the Hubble-Lema^itre constant queried by Type Ia Supernovae: A journey from the Calan-Tololo Project to the Carnegie Supernova Program

75   0   0.0 ( 0 )
 نشر من قبل Regis Cartier
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We assess the robustness of the two highest rungs of the cosmic distance ladder for Type Ia supernovae and the determination of the Hubble-Lema^itre constant. In this analysis, we hold fixed Rung 1 as the distance to the LMC determined to 1 % using Detached Eclipsing Binary stars. For Rung 2 we analyze two methods, the TRGB and Cepheid distances for the luminosity calibration of Type Ia supernovae in nearby galaxies. For Rung 3 we analyze various modern digital supernova samples in the Hubble flow, such as the Calan-Tololo, CfA, CSP, and Supercal datasets. This metadata analysis demonstrates that the TRGB calibration yields smaller $H_0$ values than the Cepheid calibration, a direct consequence of the systematic difference in the distance moduli calibrated from these two methods. Selecting the three most independent possible methodologies/bandpasses ($B$, $V$, $J$), we obtain $H_{0}=69.9 pm 0.8$ and $H_{0} =73.5 pm 0.7$ km s$^{-1}$ Mpc$^{-1}$ from the TRGB and Cepheid calibrations, respectively. Adding in quadrature the systematic uncertainty in the TRGB and Cepheid methods of 1.1 and 1.0 km s$^{-1}$ Mpc$^{-1}$, respectively, this subset reveals a significant 2.0 $sigma$ systematic difference in the calibration of Rung 2. If Rung 1 and Rung 2 are held fixed, the different formalisms developed for standardizing the supernova peak magnitudes yield consistent results, with a standard deviation of 1.5 km s$^{-1}$ Mpc$^{-1}$, that is, Type Ia supernovae are able to anchor Rung 3 with 2 % precision. This study demonstrates that Type Ia supernovae have provided a remarkably robust calibration of R3 for over 25 years.



قيم البحث

اقرأ أيضاً

This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days bef ore to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts, and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2(SiII4130) and pW6(SiII5972) provide precise calibrations of the peak B-band luminosity with dispersions of ~0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a ~2--3-sigma correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.
143 - Mario Hamuy 1996
The Calan/Tololo supernova survey has discovered ~30 Type Ia supernovae out to z~0.1. Using BVI data for these objects and nearby SNe Ia, we have shown that there exists a significant dispersion in the intrinsic luminosities of these objects. We have devised a robust chisquare minimization technique simultaneously fitting the BVI light curves to parametrize the SN event as a function of (tb,m, m15(B)) where tb is the time of B maximum, m is the peak BVI magnitude corrected for luminosity variations, and m15(B) is a single parameter describing the whole light curve morphology. When properly corrected for m15(B), SNe Ia prove to be high precision distance indicators,yielding relative distances with errors 7-10%. The corrected peak magnitudes are used to construct BVI Hubble diagrams (HD), and with Cepheid distances recently measured with the HST to four nearby SNe Ia (37C, 72E, 81B, 90N) we derive a value of the Hubble constant of 63.1+/-3.4 (internal) km/s/Mpc. This value is ~10-15% larger than the value obtained by assuming that SNe Ia are perfect standard candles. As we have shown in Paper V, there is now strong evidence that galaxies with younger stellar population appear to host the slowest-declining, and therefore most luminous SNe Ia. Hence, the use of Pop I objects such as Cepheids to calibrate the zero point of the SNe Ia HD can easily bias the results toward luminous SNe Ia, unless the absolute magnitude-decline relation is taken into account.
104 - Mario Hamuy 1996
We examine the absolute luminosities of 29 SNe Ia in the Calan/Tololo survey. We confirm a relation between the peak luminosity of the SNe and the decline rate as measured by the light curve, as suggested by Phillips (1993). We derive linear slopes t o this magnitude-decline rate relation in BV(I)kc colors, using a sample with Bmax-Vmax < 0.2 mag. The scatter around this linear relation (and thus the ability to measure SNe Ia distances) ranges from 0.13 mag (in the I band) to 0.17 mag (in the B band). We also find evidence for significant correlations between the absolute magnitudes or the decline rate of the light curve, and the morphological type of the host galaxy.
The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a Cosmology sample of $sim100$ Type Ia supernovae located in the smooth Hubble flow ($0.03 lesssim z lesssim 0.10$). L ight curves were also obtained of a Physics sample composed of 90 nearby Type Ia supernovae at $z leq 0.04$ selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.
We use the spectroscopy and homogeneous photometry of 97 Type Ia supernovae obtained by the emph{Carnegie Supernova Project} as well as a subset of 36 Type Ia supernovae presented by Zheng et al. (2018) to examine maximum-light correlations in a four -dimensional (4-D) parameter space: $B$-band absolute magnitude, $M_B$, ion{Si}{2}~$lambda6355$ velocity, vsi, and ion{Si}{2} pseudo-equivalent widths pEW(ion{Si}{2}~$lambda6355$) and pEW(ion{Si}{2}~$lambda5972$). It is shown using Gaussian mixture models (GMMs) that the original four groups in the Branch diagram are well-defined and robust in this parameterization. We find three continuous groups that describe the behavior of our sample in [$M_B$, vsi] space. Extending the GMM into the full 4-D space yields a grouping system that only slightly alters group definitions in the [$M_B$, vsi] projection, showing that most of the clustering information in [$M_B$, vsi] is already contained in the 2-D GMM groupings. However, the full 4-D space does divide group membership for faster objects between core-normal and broad-line objects in the Branch diagram. A significant correlation between $M_B$ and pEW(ion{Si}{2}~$lambda5972$) is found, which implies that Branch group membership can be well-constrained by spectroscopic quantities alone. In general, we find that higher-dimensional GMMs reduce the uncertainty of group membership for objects between the originally defined Branch groups. We also find that the broad-line Branch group becomes nearly distinct with the inclusion of vsi, indicating that this subclass of SNe Ia may be somehow different from the other groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا