ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-camera Two-Wavelength Imaging Pyrometry for Melt Pool Temperature Measurement and Monitoring in Laser Powder Bed Fusion based Additive Manufacturing

405   0   0.0 ( 0 )
 نشر من قبل Chaitanya Krishna Vallabh
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Melt pool (MP) temperature is one of the determining factors and key signatures for the properties of printed components during metal additive manufacturing (AM). The state-of-the art measurement systems are hindered by both the equipment cost and the large-scale data acquisition and processing demands. In this work, we introduce a novel coaxial high-speed single-camera two-wavelength imaging pyrometer (STWIP) system as opposed to the typical utilization of multiple cameras for measuring MP temperature profiles through a laser powder bed fusion (LPBF) process. Developed on a commercial LPBF machine (EOS M290), the STWIP system is demonstrated to be able to quantitatively monitor MP temperature and variation for 50 layers at high framerates (> 30,000 fps) during a print of five standard fatigue specimens. High performance computing is employed to analyze the acquired big data of MP images for determining each MPs average temperature and 2D temperature profile. The MP temperature evolution in the gage section of a fatigue specimen is also examined at a temporal resolution of 1ms by evaluating the derived MP temperatures of the printed samples first, middle and last layers. This paper is first of its kind on monitoring MP temperature distribution and evolution at such a large, detailed scale for longer durations in practical applications. Future work includes MP registration and machine learning of MP-Part Property relations.



قيم البحث

اقرأ أيضاً

138 - Rui Liu , Sen Liu , Xiaoli Zhang 2021
To control part quality, it is critical to analyze pore generation mechanisms, laying theoretical foundation for future porosity control. Current porosity analysis models use machine setting parameters, such as laser angle and part pose. However, the se setting-based models are machine dependent, hence they often do not transfer to analysis of porosity for a different machine. To address the first problem, a physics-informed, data-driven model (PIM), which instead of directly using machine setting parameters to predict porosity levels of printed parts, it first interprets machine settings into physical effects, such as laser energy density and laser radiation pressure. Then, these physical, machine independent effects are used to predict porosity levels according to pass, flag, fail categories instead of focusing on quantitative pore size prediction. With six learning methods evaluation, PIM proved to achieve good performances with prediction error of 10$sim$26%. Finally, pore-encouraging influence and pore-suppressing influence were analyzed for quality analysis.
Additive manufacturing (AM) technology is being increasingly adopted in a wide variety of application areas due to its ability to rapidly produce, prototype, and customize designs. AM techniques afford significant opportunities in regard to nuclear m aterials, including an accelerated fabrication process and reduced cost. High-fidelity modeling and simulation (M&S) of AM processes is being developed in Idaho National Laboratory (INL)s Multiphysics Object-Oriented Simulation Environment (MOOSE) to support AM process optimization and provide a fundamental understanding of the various physical interactions involved. In this paper, we employ Bayesian inverse uncertainty quantification (UQ) to quantify the input uncertainties in a MOOSE-based melt pool model for AM. Inverse UQ is the process of inversely quantifying the input uncertainties while keeping model predictions consistent with the measurement data. The inverse UQ process takes into account uncertainties from the model, code, and data while simultaneously characterizing the uncertain distributions in the input parameters--rather than merely providing best-fit point estimates. We employ measurement data on melt pool geometry (lengths and depths) to quantify the uncertainties in several melt pool model parameters. Simulation results using the posterior uncertainties have shown improved agreement with experimental data, as compared to those using the prior nominal values. The resulting parameter uncertainties can be used to replace expert opinions in future uncertainty, sensitivity, and validation studies.
Quality control in additive manufacturing can be achieved through variation control of the quantity of interest (QoI). We choose in this work the microstructural microsegregation to be our QoI. Microsegregation results from the spatial redistribution of a solute element across the solid-liquid interface that forms during solidification of an alloy melt pool during the laser powder bed fusion process. Since the process as well as the alloy parameters contribute to the statistical variation in microstructural features, uncertainty analysis of the QoI is essential. High-throughput phase-field simulations estimate the solid-liquid interfaces that grow for the melt pool solidification conditions that were estimated from finite element simulations. Microsegregation was determined from the simulated interfaces for different process and alloy parameters. Correlation, regression, and surrogate model analyses were used to quantify the contribution of different sources of uncertainty to the QoI variability. We found negligible contributions of thermal gradient and Gibbs-Thomson coefficient and considerable contributions of solidification velocity, liquid diffusivity, and segregation coefficient on the QoI. Cumulative distribution functions and probability density functions were used to analyze the distribution of the QoI during solidification. Our approach, for the first time, identifies the uncertainty sources and frequency densities of the QoI in the solidification regime relevant to additive manufacturing.
Powder-based additive manufacturing techniques provide tools to construct intricate structures that are difficult to manufacture using conventional methods. In Laser Powder Bed Fusion, components are built by selectively melting specific areas of the powder bed, to form the two-dimensional cross-section of the specific part. However, the high occurrence of defects impacts the adoption of this method for precision applications. Therefore, a control policy for dynamically altering process parameters to avoid phenomena that lead to defect occurrences is necessary. A Deep Reinforcement Learning (DRL) framework that derives a versatile control strategy for minimizing the likelihood of these defects is presented. The generated control policy alters the velocity of the laser during the melting process to ensure the consistency of the melt pool and reduce overheating in the generated product. The control policy is trained and validated on efficient simulations of the continuum temperature distribution of the powder bed layer under various laser trajectories.
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts. In-process monitoring and feedback controls that would reduce the uncertainty in the quality of the material are in the early stages of development. Machine learning promises the ability to accelerate the adoption of new processes and property design in additive manufacturing by making process-structure-property connections between process setting inputs and material quality outcomes. The molten pool dimensional information and temperature are the indicators for achieving the high quality of the build, which can be directly controlled by processing parameters. For the purpose of in situ quality control, the process parameters should be controlled in real-time based on sensed information from the process, in particular the molten pool. Thus, the molten pool-process relations are of preliminary importance. This paper analyzes experimentally collected in situ sensing data from the molten pool under a set of controlled process parameters in a WLAM system. The variations in the steady-state and transient state of the molten pool are presented with respect to the change of independent process parameters. A multi-modality convolutional neural network (CNN) architecture is proposed for predicting the control parameter directly from the measurable molten pool sensor data for achieving desired geometric and microstructural properties. Dropout and regularization are applied to the CNN architecture to avoid the problem of overfitting. The results highlighted that the multi-modal CNN, which receives temperature profile as an external feature to the features extracted from the image data, has improved prediction performance compared to the image-based uni-modality CNN approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا