ﻻ يوجد ملخص باللغة العربية
Melt pool (MP) temperature is one of the determining factors and key signatures for the properties of printed components during metal additive manufacturing (AM). The state-of-the art measurement systems are hindered by both the equipment cost and the large-scale data acquisition and processing demands. In this work, we introduce a novel coaxial high-speed single-camera two-wavelength imaging pyrometer (STWIP) system as opposed to the typical utilization of multiple cameras for measuring MP temperature profiles through a laser powder bed fusion (LPBF) process. Developed on a commercial LPBF machine (EOS M290), the STWIP system is demonstrated to be able to quantitatively monitor MP temperature and variation for 50 layers at high framerates (> 30,000 fps) during a print of five standard fatigue specimens. High performance computing is employed to analyze the acquired big data of MP images for determining each MPs average temperature and 2D temperature profile. The MP temperature evolution in the gage section of a fatigue specimen is also examined at a temporal resolution of 1ms by evaluating the derived MP temperatures of the printed samples first, middle and last layers. This paper is first of its kind on monitoring MP temperature distribution and evolution at such a large, detailed scale for longer durations in practical applications. Future work includes MP registration and machine learning of MP-Part Property relations.
To control part quality, it is critical to analyze pore generation mechanisms, laying theoretical foundation for future porosity control. Current porosity analysis models use machine setting parameters, such as laser angle and part pose. However, the
Additive manufacturing (AM) technology is being increasingly adopted in a wide variety of application areas due to its ability to rapidly produce, prototype, and customize designs. AM techniques afford significant opportunities in regard to nuclear m
Quality control in additive manufacturing can be achieved through variation control of the quantity of interest (QoI). We choose in this work the microstructural microsegregation to be our QoI. Microsegregation results from the spatial redistribution
Powder-based additive manufacturing techniques provide tools to construct intricate structures that are difficult to manufacture using conventional methods. In Laser Powder Bed Fusion, components are built by selectively melting specific areas of the
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts. In-process monitoring and feedback controls that would reduce the uncertainty in the