ترغب بنشر مسار تعليمي؟ اضغط هنا

DCUR: Data Curriculum for Teaching via Samples with Reinforcement Learning

178   0   0.0 ( 0 )
 نشر من قبل Daniel Seita
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep reinforcement learning (RL) has shown great empirical successes, but suffers from brittleness and sample inefficiency. A potential remedy is to use a previously-trained policy as a source of supervision. In this work, we refer to these policies as teachers and study how to transfer their expertise to new student policies by focusing on data usage. We propose a framework, Data CUrriculum for Reinforcement learning (DCUR), which first trains teachers using online deep RL, and stores the logged environment interaction history. Then, students learn by running either offline RL or by using teacher data in combination with a small amount of self-generated data. DCURs central idea involves defining a class of data curricula which, as a function of training time, limits the student to sampling from a fixed subset of the full teacher data. We test teachers and students using state-of-the-art deep RL algorithms across a variety of data curricula. Results suggest that the choice of data curricula significantly impacts student learning, and that it is beneficial to limit the data during early training stages while gradually letting the data availability grow over time. We identify when the student can learn offline and match teacher performance without relying on specialized offline RL algorithms. Furthermore, we show that collecting a small fraction of online data provides complementary benefits with the data curriculum. Supplementary material is available at https://tinyurl.com/teach-dcur.



قيم البحث

اقرأ أيضاً

Humans tend to learn complex abstract concepts faster if examples are presented in a structured manner. For instance, when learning how to play a board game, usually one of the first concepts learned is how the game ends, i.e. the actions that lead t o a terminal state (win, lose or draw). The advantage of learning end-games first is that once the actions which lead to a terminal state are understood, it becomes possible to incrementally learn the consequences of actions that are further away from a terminal state - we call this an end-game-first curriculum. Currently the state-of-the-art machine learning player for general board games, AlphaZero by Google DeepMind, does not employ a structured training curriculum; instead learning from the entire game at all times. By employing an end-game-first training curriculum to train an AlphaZero inspired player, we empirically show that the rate of learning of an artificial player can be improved during the early stages of training when compared to a player not using a training curriculum.
Reinforcement learning provides a general framework for flexible decision making and control, but requires extensive data collection for each new task that an agent needs to learn. In other machine learning fields, such as natural language processing or computer vision, pre-training on large, previously collected datasets to bootstrap learning for new tasks has emerged as a powerful paradigm to reduce data requirements when learning a new task. In this paper, we ask the following question: how can we enable similarly useful pre-training for RL agents? We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials from a wide range of previously seen tasks, and we show how this learned prior can be used for rapidly learning new tasks without impeding the RL agents ability to try out novel behaviors. We demonstrate the effectiveness of our approach in challenging robotic manipulation domains involving image observations and sparse reward functions, where our method outperforms prior works by a substantial margin.
We study a security threat to reinforcement learning where an attacker poisons the learning environment to force the agent into executing a target policy chosen by the attacker. As a victim, we consider RL agents whose objective is to find a policy t hat maximizes reward in infinite-horizon problem settings. The attacker can manipulate the rewards and the transition dynamics in the learning environment at training-time, and is interested in doing so in a stealthy manner. We propose an optimization framework for finding an optimal stealthy attack for different measures of attack cost. We provide lower/upper bounds on the attack cost, and instantiate our attacks in two settings: (i) an offline setting where the agent is doing planning in the poisoned environment, and (ii) an online setting where the agent is learning a policy with poisoned feedback. Our results show that the attacker can easily succeed in teaching any target policy to the victim under mild conditions and highlight a significant security threat to reinforcement learning agents in practice.
Autonomous Vehicles (AVs) are required to operate safely and efficiently in dynamic environments. For this, the AVs equipped with Joint Radar-Communications (JRC) functions can enhance the driving safety by utilizing both radar detection and data com munication functions. However, optimizing the performance of the AV system with two different functions under uncertainty and dynamic of surrounding environments is very challenging. In this work, we first propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions in selecting JRC operation functions under the dynamic and uncertainty of the surrounding environment. We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV without requiring any prior information about surrounding environment. Furthermore, to make our proposed framework more scalable, we develop a Transfer Learning (TL) mechanism that enables the AV to leverage valuable experiences for accelerating the training process when it moves to a new environment. Extensive simulations show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to le arn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Incorporating the IRL engine into the nonlinear latent structure renders existing deep GP inference approaches intractable. To tackle this, we develop a non-standard variational approximation framework which extends previous inference schemes. This allows for approximate Bayesian treatment of the feature space and guards against overfitting. Carrying out representation and inverse reinforcement learning simultaneously within our model outperforms state-of-the-art approaches, as we demonstrate with experiments on standard benchmarks (object world,highway driving) and a new benchmark (binary world).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا