ﻻ يوجد ملخص باللغة العربية
Modeling joint probability distributions is an important task in a wide variety of fields. One popular technique for this employs a family of multivariate distributions with uniform marginals called copulas. While the theory of modeling joint distributions via copulas is well understood, it gets practically challenging to accurately model real data with many variables. In this work, we design quantum machine learning algorithms to model copulas. We show that any copula can be naturally mapped to a multipartite maximally entangled state. A variational ansatz we christen as a `qopula creates arbitrary correlations between variables while maintaining the copula structure starting from a set of Bell pairs for two variables, or GHZ states for multiple variables. As an application, we train a Quantum Generative Adversarial Network (QGAN) and a Quantum Circuit Born Machine (QCBM) using this variational ansatz to generate samples from joint distributions of two variables for historical data from the stock market. We demonstrate our generative learning algorithms on trapped ion quantum computers from IonQ for up to 8 qubits and show that our results outperform those obtained through equivalent classical generative learning. Further, we present theoretical arguments for exponential advantage in our models expressivity over classical models based on communication and computational complexity arguments.
We discuss the problem of separating the total correlations in a given quantum joint probability distribution into nonlocality, contextuality and classical correlations. Bell discord and Mermin discord which qunatify nonlocality and contextuality of
On the basis of the existing trace distance result, we present a simple and efficient method to tighten the upper bound of the guessing probability. The guessing probability of the final key k can be upper bounded by the guessing probability of anoth
A new generative adversarial network is developed for joint distribution matching. Distinct from most existing approaches, that only learn conditional distributions, the proposed model aims to learn a joint distribution of multiple random variables (
Quantum machine learning has recently attracted much attention from the community of quantum computing. In this paper, we explore the ability of generative adversarial networks (GANs) based on quantum computing. More specifically, we propose a quantu
Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning---a subfield of artificial intelligence that is currently driving a revolution in many aspects of modern society. It has shown splendid performance i