ﻻ يوجد ملخص باللغة العربية
Quantum machine learning has recently attracted much attention from the community of quantum computing. In this paper, we explore the ability of generative adversarial networks (GANs) based on quantum computing. More specifically, we propose a quantum GAN for generating classical discrete distribution, which has a classical-quantum hybrid architecture and is composed of a parameterized quantum circuit as the generator and a classical neural network as the discriminator. The parameterized quantum circuit only consists of simple one-qubit rotation gates and two-qubit controlled-phase gates that are available in current quantum devices. Our scheme has the following characteristics and potential advantages: (i) It is intrinsically capable of generating discrete data (e.g., text data), while classical GANs are clumsy for this task due to the vanishing gradient problem. (ii) Our scheme avoids the input/output bottlenecks embarrassing most of the existing quantum learning algorithms that either require to encode the classical input data into quantum states, or output a quantum state corresponding to the solution instead of giving the solution itself, which inevitably compromises the speedup of the quantum algorithm. (iii) The probability distribution implicitly given by data samples can be loaded into a quantum state, which may be useful for some further applications.
Tremendous progress has been witnessed in artificial intelligence, where neural network backed deep learning systems have been used, with applications in almost every domain. As a representative deep learning framework, Generative Adversarial Network
Generative adversarial networks are an emerging technique with wide applications in machine learning, which have achieved dramatic success in a number of challenging tasks including image and video generation. When equipped with quantum processors, t
Generative adversarial networks (GANs) are one of the most widely adopted semisupervised and unsupervised machine learning methods for high-definition image, video, and audio generation. In this work, we propose a new type of architecture for quantum
This chapter reviews recent developments of generative adversarial networks (GAN)-based methods for medical and biomedical image synthesis tasks. These methods are classified into conditional GAN and Cycle-GAN according to the network architecture de
Quantum machine learning is expected to be one of the first practical applications of near-term quantum devices. Pioneer theoretical works suggest that quantum generative adversarial networks (GANs) may exhibit a potential exponential advantage over