ﻻ يوجد ملخص باللغة العربية
On the basis of the existing trace distance result, we present a simple and efficient method to tighten the upper bound of the guessing probability. The guessing probability of the final key k can be upper bounded by the guessing probability of another key k, if k can be mapped from the final key k. Compared with the known methods, our result is more tightened by thousands of orders of magnitude. For example, given a 10^{-9}-secure key from the sifted key, the upper bound of the guessing probability obtained using our method is 2*10^(-3277). This value is smaller than the existing result 10^(-9) by more than 3000 orders of magnitude. Our result shows that from the perspective of guessing probability, the performance of the existing trace distance security is actually much better than what was assumed in the past.
This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduc
A new scheme of Quantum Key Distribution is proposed using three entangled particles in a GHZ state. Alice holds a 3-particle source and sends two particles to Bob, keeping one with herself. Bob uses one particle to generate a secure key, and the oth
Global quantum communications will enable long-distance secure data transfer, networked distributed quantum information processing, and other entanglement-enabled technologies. Satellite quantum communication overcomes optical fibre range limitations
This paper proposes a new protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than BB84 one. We
Quantum key distribution is one of the most fundamental cryptographic protocols. Quantum walks are important primitives for computing. In this paper we take advantage of the properties of quantum walks to design new secure quantum key distribution sc