ترغب بنشر مسار تعليمي؟ اضغط هنا

The homogeneity of the star forming environment of the Milky Way disk over time

227   0   0.0 ( 0 )
 نشر من قبل Melissa Ness
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar abundances and ages afford the means to link chemical enrichment to galactic formation. In the Milky Way, individual element abundances show tight correlations with age, which vary in slope across ([Fe/H]-[$alpha$/Fe]). Here, we step from characterising abundances as measures of age, to understanding how abundances trace properties of stellar birth-environment in the disk over time. Using measurements from $sim$27,000 APOGEE stars (R=22,500, SNR$>$200), we build simple local linear models to predict a sample of elements (X = Si, O, Ca, Ti, Ni, Al, Mn, Cr) using (Fe, Mg) abundances alone, as fiducial tracers of supernovae production channels. Given [Fe/H] and [Mg/H], we predict these elements, [X/H], to about double the uncertainty of their measurements. The intrinsic dispersion, after subtracting measurement errors in quadrature is $approx 0.015-0.04$~dex. The residuals of the prediction (measurement $-$ model) for each element demonstrate that each element has an individual link to birth properties at fixed (Fe, Mg). Residuals from primarily massive-star supernovae (i.e. Si, O, Al) partially correlate with guiding radius. Residuals from primarily supernovae Ia (i.e. Mn, Ni) partially correlate with age. A fraction of the intrinsic scatter that persists at fixed (Fe, Mg), however, after accounting for correlations, does not appear to further discriminate between birth properties that can be traced with present-day measurements. Presumably, this is because the residuals are also, in part, a measure of the typical (in)-homogeneity of the disks stellar birth environments, previously inferred only using open-cluster systems. Our study implies at fixed birth radius and time, there is a median scatter of $approx 0.01-0.015$ dex in elements generated in supernovae sources.



قيم البحث

اقرأ أيضاً

The chemical homogeneity of surviving stellar clusters contains important clues about interstellar medium (ISM) mixing efficiency, star formation, and the enrichment history of the Galaxy. Existing measurements in a handful of open clusters suggest h omogeneity in several elements at the 0.03 dex level. Here we present (i) a new cluster member catalog based only on APOGEE radial velocities and Gaia-DR2 proper motions, (ii) improved abundance uncertainties for APOGEE cluster members, and (iii) the dependence of cluster homogeneity on Galactic and cluster properties, using abundances of eight elements from the APOGEE survey for ten high-quality clusters. We find that cluster homogeneity is uncorrelated with Galactocentric distance, |Z|, age, and metallicity. However, velocity dispersion, which is a proxy for cluster mass, is positively correlated with intrinsic scatter at relatively high levels of significance for [Ca/Fe] and [Mg/Fe]. We also see a possible positive correlation at a low level of significance for [Ni/Fe], [Si/Fe], [Al/Fe], and [Fe/H], while [Cr/Fe] and [Mn/Fe] are uncorrelated. The elements that show a correlation with velocity dispersion are those that are predominantly produced by core-collapse supernovae (CCSNe). However, the small sample size and relatively low correlation significance highlight the need for follow-up studies. If borne out by future studies, these findings would suggest a quantitative difference between the correlation lengths of elements produced predominantly by Type~Ia SNe versus CCSNe, which would have implications for Galactic chemical evolution models and the feasibility of chemical tagging.
115 - Shogo Nishiyama 2012
Aims. Young, massive stars have been found at projected distances R < 0.5 pc from supermassive black hole, Sgr A* at the center of our Galay. In recent years, increasing evidence has been found for the presence of young, massive stars also at R > 0.5 pc. Our goal in this work is a systematic search for young, massive star candidates throughout the entire region within R ~ 2.5 pc of the black hole. Methods. The main criterion for the photometric identification of young, massive early-type stars is the lack of CO-absorption in the spectra. We used narrow-band imaging with VLT/ISAAC to search for young, massive stars within ~2.5 pc of Sgr A*. Results. We have found 63 early-type star candidates at R < 2.5 pc, with an estimated erroneous identification rate of only about 20%. Considering their K-band magnitudes and interstellar extinction, they are candidates for Wolf-Rayet stars, supergiants, or early O-type stars. Of these, 31 stars are so far unknown young, massive star candidates, all of which lie at R>0.5pc. The surface number density profile of the young, massive star candidates can be well fit by a single power-law, with Gamma = 1.6 +- 0.17 at R < 2.5 pc, which is significantly steeper than that of the late-type giants that make up the bulk of the observable stars in the NSC. Intriguingly, this power-law is consistent with the power-law that describes the surface density of young, massive stars in the same brightness range at R < 0.5 pc. Conclusions. The finding of a significant number of newly identified early-type star candidates at the Galactic center suggests that young, massive stars can be found throughout the entire cluster which may require us to modify existing theories for star formation at the Galactic center. Follow-up studies are needed to improve the existing data and lay the foundations for a unified theory of star formation in the Milky Ways NSC.
Investigations of the origin and evolution of the Milky Way disk have long relied on chemical and kinematic identification of its components to reconstruct our Galactic past. Difficulties in determining precise stellar ages have restricted most studi es to small samples, normally confined to the solar neighbourhood. Here we break this impasse with the help of asteroseismic inference and perform a chronology of the evolution of the disk throughout the age of the Galaxy. We chemically dissect the Milky Way disk population using a sample of red giant stars spanning out to 2~kpc in the solar annulus observed by the {it Kepler} satellite, with the added dimension of asteroseismic ages. Our results reveal a clear difference in age between the low- and high-$alpha$ populations, which also show distinct velocity dispersions in the $V$ and $W$ components. We find no tight correlation between age and metallicity nor [$alpha$/Fe] for the high-$alpha$ disk stars. Our results indicate that this component formed over a period of more than 2~Gyr with a wide range of [M/H] and [$alpha$/Fe] independent of time. Our findings show that the kinematic properties of young $alpha$-rich stars are consistent with the rest of the high-$alpha$ population and different from the low-$alpha$ stars of similar age, rendering support to their origin being old stars that went through a mass transfer or stellar merger event, making them appear younger, instead of migration of truly young stars formed close to the Galactic bar.
Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Ways disk, and examined how this gradient varies for different [a/F e] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the surveys consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the in situ structure, in contrast to previous analyses which are more limited in scope. This work does not pre-suppose a disk structure, whether composed of a single complex population or a distinct thin and thick disk component. The metallicity gradient is -0.243 +0.039 -0.053 dex/kpc for the sample as a whole, which we compare to various literature results. Each [a/Fe] subsample dominates at a different range of heights above the plane of the Galaxy, which is exhibited in the gradient found in the sample as a whole. Stars over a limited range in [a/Fe] show little change in median [Fe/H] with height. If we associate [a/Fe] with age, our consistent vertical metallicity gradients with [a/Fe] suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star-formation processes and evolution.
The Milky Way provides an ideal laboratory to test our understanding of galaxy evolution, owing to our ability to observe our Galaxy over fine scales. However, connecting the Galaxy to the wider galaxy population remains difficult, due to the challen ges posed by our internal perspective and to the different observational techniques employed. Here, we present a sample of galaxies identified as Milky Way Analogs (MWAs) on the basis of their stellar masses and bulge-to-total ratios, observed as part of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. We analyse the galaxies in terms of their stellar kinematics and populations as well as their ionised gas contents. We find our sample to contain generally young stellar populations in their outskirts. However, we find a wide range of stellar ages in their central regions, and we detect central AGN-like or composite-like activity in roughly half of the sample galaxies, with the other half consisting of galaxies with central star-forming emission or emission consistent with old stars. We measure gradients in gas metallicity and stellar metallicity that are generally flatter in physical units than those measured for the Milky Way; however, we find far better agreement with the Milky Way when scaling gradients by galaxies disc scale lengths. From this, we argue much of the discrepancy in metallicity gradients to be due to the relative compactness of the Milky Way, with differences in observing perspective also likely to be a factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا