ترغب بنشر مسار تعليمي؟ اضغط هنا

Open Cluster Chemical Homogeneity Throughout the Milky Way

126   0   0.0 ( 0 )
 نشر من قبل Vijith Jacob Poovelil
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chemical homogeneity of surviving stellar clusters contains important clues about interstellar medium (ISM) mixing efficiency, star formation, and the enrichment history of the Galaxy. Existing measurements in a handful of open clusters suggest homogeneity in several elements at the 0.03 dex level. Here we present (i) a new cluster member catalog based only on APOGEE radial velocities and Gaia-DR2 proper motions, (ii) improved abundance uncertainties for APOGEE cluster members, and (iii) the dependence of cluster homogeneity on Galactic and cluster properties, using abundances of eight elements from the APOGEE survey for ten high-quality clusters. We find that cluster homogeneity is uncorrelated with Galactocentric distance, |Z|, age, and metallicity. However, velocity dispersion, which is a proxy for cluster mass, is positively correlated with intrinsic scatter at relatively high levels of significance for [Ca/Fe] and [Mg/Fe]. We also see a possible positive correlation at a low level of significance for [Ni/Fe], [Si/Fe], [Al/Fe], and [Fe/H], while [Cr/Fe] and [Mn/Fe] are uncorrelated. The elements that show a correlation with velocity dispersion are those that are predominantly produced by core-collapse supernovae (CCSNe). However, the small sample size and relatively low correlation significance highlight the need for follow-up studies. If borne out by future studies, these findings would suggest a quantitative difference between the correlation lengths of elements produced predominantly by Type~Ia SNe versus CCSNe, which would have implications for Galactic chemical evolution models and the feasibility of chemical tagging.



قيم البحث

اقرأ أيضاً

114 - Shogo Nishiyama 2012
Aims. Young, massive stars have been found at projected distances R < 0.5 pc from supermassive black hole, Sgr A* at the center of our Galay. In recent years, increasing evidence has been found for the presence of young, massive stars also at R > 0.5 pc. Our goal in this work is a systematic search for young, massive star candidates throughout the entire region within R ~ 2.5 pc of the black hole. Methods. The main criterion for the photometric identification of young, massive early-type stars is the lack of CO-absorption in the spectra. We used narrow-band imaging with VLT/ISAAC to search for young, massive stars within ~2.5 pc of Sgr A*. Results. We have found 63 early-type star candidates at R < 2.5 pc, with an estimated erroneous identification rate of only about 20%. Considering their K-band magnitudes and interstellar extinction, they are candidates for Wolf-Rayet stars, supergiants, or early O-type stars. Of these, 31 stars are so far unknown young, massive star candidates, all of which lie at R>0.5pc. The surface number density profile of the young, massive star candidates can be well fit by a single power-law, with Gamma = 1.6 +- 0.17 at R < 2.5 pc, which is significantly steeper than that of the late-type giants that make up the bulk of the observable stars in the NSC. Intriguingly, this power-law is consistent with the power-law that describes the surface density of young, massive stars in the same brightness range at R < 0.5 pc. Conclusions. The finding of a significant number of newly identified early-type star candidates at the Galactic center suggests that young, massive stars can be found throughout the entire cluster which may require us to modify existing theories for star formation at the Galactic center. Follow-up studies are needed to improve the existing data and lay the foundations for a unified theory of star formation in the Milky Ways NSC.
The Milky Way provides an ideal laboratory to test our understanding of galaxy evolution, owing to our ability to observe our Galaxy over fine scales. However, connecting the Galaxy to the wider galaxy population remains difficult, due to the challen ges posed by our internal perspective and to the different observational techniques employed. Here, we present a sample of galaxies identified as Milky Way Analogs (MWAs) on the basis of their stellar masses and bulge-to-total ratios, observed as part of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. We analyse the galaxies in terms of their stellar kinematics and populations as well as their ionised gas contents. We find our sample to contain generally young stellar populations in their outskirts. However, we find a wide range of stellar ages in their central regions, and we detect central AGN-like or composite-like activity in roughly half of the sample galaxies, with the other half consisting of galaxies with central star-forming emission or emission consistent with old stars. We measure gradients in gas metallicity and stellar metallicity that are generally flatter in physical units than those measured for the Milky Way; however, we find far better agreement with the Milky Way when scaling gradients by galaxies disc scale lengths. From this, we argue much of the discrepancy in metallicity gradients to be due to the relative compactness of the Milky Way, with differences in observing perspective also likely to be a factor.
We made use of the Gaia DR2 archive to comprehensively study the Milky Way open cluster Collinder 347, known until now as a very young object of solar metal-content. However, the G versus G_BP-G_RP colour-magnitude diagram (CMD) of bonafide probable cluster members, selected on the basis of individual stellar proper motions, their spatial distribution and placement in the CMD, reveals the existence of a Hyades-like age open cluster (log(t /yr) = 8.8) of moderately metal-poor chemical content ([Fe/H] = -0.4 dex), with a present-day mass of 3.3x10^3 Mo. The cluster exhibits an extended Main-Sequence turnoff (eMSTO) of nearly 500 Myr, while that computed assuming Gaussian distributions from photometric errors, stellar binarity, rotation and metallicity spread yields an eMSTO of ~340 Myr. Such an age difference points to the existence within the cluster of stellar populations with different ages.
Metallicity gradients provide strong constraints for understanding the chemical evolution of the Galaxy. We report on radial abundance gradients of Fe, Ni, Ca, Si, and Mg obtained from a sample of 304 red-giant members of 29 disk open clusters, mostl y concentrated at galactocentric distances between ~8 - 15 kpc, but including two open clusters in the outer disk. The observations are from the APOGEE survey. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS III Data Release 12. The gradients, obtained from least squares fits to the data, are relatively flat, with slopes ranging from -0.026 to -0.033 dex/kpc for the alpha-elements [O/H], [Ca/H], [Si/H] and [Mg/H] and -0.035 dex/kpc and -0.040 dex/kpc for [Fe/H] and [Ni/H], respectively. Our results are not at odds with the possibility that metallicity ([Fe/H]) gradients are steeper in the inner disk (R_GC ~7 - 12 kpc) and flatter towards the outer disk. The open cluster sample studied spans a significant range in age. When breaking the sample into age bins, there is some indication that the younger open cluster population in our sample (log age < 8.7) has a flatter metallicity gradient when compared with the gradients obtained from older open clusters.
Stellar abundances and ages afford the means to link chemical enrichment to galactic formation. In the Milky Way, individual element abundances show tight correlations with age, which vary in slope across ([Fe/H]-[$alpha$/Fe]). Here, we step from cha racterising abundances as measures of age, to understanding how abundances trace properties of stellar birth-environment in the disk over time. Using measurements from $sim$27,000 APOGEE stars (R=22,500, SNR$>$200), we build simple local linear models to predict a sample of elements (X = Si, O, Ca, Ti, Ni, Al, Mn, Cr) using (Fe, Mg) abundances alone, as fiducial tracers of supernovae production channels. Given [Fe/H] and [Mg/H], we predict these elements, [X/H], to about double the uncertainty of their measurements. The intrinsic dispersion, after subtracting measurement errors in quadrature is $approx 0.015-0.04$~dex. The residuals of the prediction (measurement $-$ model) for each element demonstrate that each element has an individual link to birth properties at fixed (Fe, Mg). Residuals from primarily massive-star supernovae (i.e. Si, O, Al) partially correlate with guiding radius. Residuals from primarily supernovae Ia (i.e. Mn, Ni) partially correlate with age. A fraction of the intrinsic scatter that persists at fixed (Fe, Mg), however, after accounting for correlations, does not appear to further discriminate between birth properties that can be traced with present-day measurements. Presumably, this is because the residuals are also, in part, a measure of the typical (in)-homogeneity of the disks stellar birth environments, previously inferred only using open-cluster systems. Our study implies at fixed birth radius and time, there is a median scatter of $approx 0.01-0.015$ dex in elements generated in supernovae sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا