ﻻ يوجد ملخص باللغة العربية
Using G dwarfs from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey, we have determined a vertical metallicity gradient over a large volume of the Milky Ways disk, and examined how this gradient varies for different [a/Fe] subsamples. This sample contains over 40,000 stars with low-resolution spectroscopy over 144 lines of sight. We employ the SEGUE Stellar Parameter Pipeline (SSPP) to obtain estimates of effective temperature, surface gravity, [Fe/H], and [a/Fe] for each star and extract multiple volume-complete subsamples of approximately 1000 stars each. Based on the surveys consistent target-selection algorithm, we adjust each subsample to determine an unbiased picture of the disk in [Fe/H] and [a/Fe]; consequently, each individual star represents the properties of many. The SEGUE sample allows us to constrain the vertical metallicity gradient for a large number of stars over a significant volume of the disk, between ~0.3 and 1.6 kpc from the Galactic plane, and examine the in situ structure, in contrast to previous analyses which are more limited in scope. This work does not pre-suppose a disk structure, whether composed of a single complex population or a distinct thin and thick disk component. The metallicity gradient is -0.243 +0.039 -0.053 dex/kpc for the sample as a whole, which we compare to various literature results. Each [a/Fe] subsample dominates at a different range of heights above the plane of the Galaxy, which is exhibited in the gradient found in the sample as a whole. Stars over a limited range in [a/Fe] show little change in median [Fe/H] with height. If we associate [a/Fe] with age, our consistent vertical metallicity gradients with [a/Fe] suggest that stars formed in different epochs exhibit comparable vertical structure, implying similar star-formation processes and evolution.
An oscillating vertical displacement of the Milky Way, with a wavelength of about 8 kpc and and amplitude of about 100 pc (increasing with distance from the Galactic center) is observed towards the Galactic anticenter. These oscillations are thought
The structure, kinematics, and chemical composition of the far side of the Milky Way disk, beyond the bulge, are still to be revealed. Classical Cepheids (CCs) are young and luminous standard candles. We aim to use a well-characterized sample of thes
We present an examination of the metallicity distribution function of the outermost stellar halo of the Galaxy based on an analysis of both local (within 4 kpc of the Sun, ~16,500 stars) and non-local (~21,700 stars) samples. These samples were compi
We present a chemo-dynamical analysis of low-resolution ($R sim 1300$) spectroscopy of stars from the AAOmega Evolution of Galactic Structure (AEGIS) survey, focusing on two key populations of carbon-enhanced metal-poor (CEMP) stars within the disk s
We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiment (RAVE