ﻻ يوجد ملخص باللغة العربية
Few-shot slot tagging is an emerging research topic in the field of Natural Language Understanding (NLU). With sufficient annotated data from source domains, the key challenge is how to train and adapt the model to another target domain which only has few labels. Conventional few-shot approaches use all the data from the source domains without considering inter-domain relations and implicitly assume each sample in the domain contributes equally. However, our experiments show that the data distribution bias among different domains will significantly affect the adaption performance. Moreover, transferring knowledge from dissimilar domains will even introduce some extra noises so that affect the performance of models. To tackle this problem, we propose an effective similarity-based method to select data from the source domains. In addition, we propose a Shared-Private Network (SP-Net) for the few-shot slot tagging task. The words from the same class would have some shared features. We extract those shared features from the limited annotated data on the target domain and merge them together as the label embedding to help us predict other unlabelled data on the target domain. The experiment shows that our method outperforms the state-of-the-art approaches with fewer source data. The result also proves that some training data from dissimilar sources are redundant and even negative for the adaption.
Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieved state-of-the-art performance. However, existing solutions heavily rely on the exploitation of lexical features and their distributional signatures o
Partial-label learning (PLL) generally focuses on inducing a noise-tolerant multi-class classifier by training on overly-annotated samples, each of which is annotated with a set of labels, but only one is the valid label. A basic promise of existing
Most previous methods for text data augmentation are limited to simple tasks and weak baselines. We explore data augmentation on hard tasks (i.e., few-shot natural language understanding) and strong baselines (i.e., pretrained models with over one bi
In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent lab
Few-shot learning has been proposed and rapidly emerging as a viable means for completing various tasks. Many few-shot models have been widely used for relation learning tasks. However, each of these models has a shortage of capturing a certain aspec