ﻻ يوجد ملخص باللغة العربية
Most previous methods for text data augmentation are limited to simple tasks and weak baselines. We explore data augmentation on hard tasks (i.e., few-shot natural language understanding) and strong baselines (i.e., pretrained models with over one billion parameters). Under this setting, we reproduced a large number of previous augmentation methods and found that these methods bring marginal gains at best and sometimes degrade the performance much. To address this challenge, we propose a novel data augmentation method FlipDA that jointly uses a generative model and a classifier to generate label-flipped data. Central to the idea of FlipDA is the discovery that generating label-flipped data is more crucial to the performance than generating label-preserved data. Experiments show that FlipDA achieves a good tradeoff between effectiveness and robustness---it substantially improves many tasks while not negatively affecting the others.
Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation -- a technique particularly suitab
Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, wh
Natural Language Generation (NLG) is a key component in a task-oriented dialogue system, which converts the structured meaning representation (MR) to the natural language. For large-scale conversational systems, where it is common to have over hundre
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks. However, these models are typically fine-tuned on hundreds of thousands of data points, an infeasible re
Few-shot slot tagging is an emerging research topic in the field of Natural Language Understanding (NLU). With sufficient annotated data from source domains, the key challenge is how to train and adapt the model to another target domain which only ha