ترغب بنشر مسار تعليمي؟ اضغط هنا

FlipDA: Effective and Robust Data Augmentation for Few-Shot Learning

101   0   0.0 ( 0 )
 نشر من قبل Zhilin Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most previous methods for text data augmentation are limited to simple tasks and weak baselines. We explore data augmentation on hard tasks (i.e., few-shot natural language understanding) and strong baselines (i.e., pretrained models with over one billion parameters). Under this setting, we reproduced a large number of previous augmentation methods and found that these methods bring marginal gains at best and sometimes degrade the performance much. To address this challenge, we propose a novel data augmentation method FlipDA that jointly uses a generative model and a classifier to generate label-flipped data. Central to the idea of FlipDA is the discovery that generating label-flipped data is more crucial to the performance than generating label-preserved data. Experiments show that FlipDA achieves a good tradeoff between effectiveness and robustness---it substantially improves many tasks while not negatively affecting the others.



قيم البحث

اقرأ أيضاً

Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation -- a technique particularly suitab le for training with limited data -- for this few-shot, highly-multiclass text classification setting. On four diverse text classification tasks, we find that common data augmentation techniques can improve the performance of triplet networks by up to 3.0% on average. To further boost performance, we present a simple training strategy called curriculum data augmentation, which leverages curriculum learning by first training on only original examples and then introducing augmented data as training progresses. We explore a two-stage and a gradual schedule, and find that, compared with standard single-stage training, curriculum data augmentation trains faster, improves performance, and remains robust to high amounts of noising from augmentation.
Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, wh ich stands for Self-Training with Task Augmentation, an approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a novel technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeled texts. Second, STraTA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data. Our experiments demonstrate that STraTA can substantially improve sample efficiency across 12 few-shot benchmarks. Remarkably, on the SST-2 sentiment dataset, STraTA, with only 8 training examples per class, achieves comparable results to standard fine-tuning with 67K training examples. Our analyses reveal that task augmentation and self-training are both complementary and independently effective.
Natural Language Generation (NLG) is a key component in a task-oriented dialogue system, which converts the structured meaning representation (MR) to the natural language. For large-scale conversational systems, where it is common to have over hundre ds of intents and thousands of slots, neither template-based approaches nor model-based approaches are scalable. Recently, neural NLGs started leveraging transfer learning and showed promising results in few-shot settings. This paper proposes AUGNLG, a novel data augmentation approach that combines a self-trained neural retrieval model with a few-shot learned NLU model, to automatically create MR-to-Text data from open-domain texts. The proposed system mostly outperforms the state-of-the-art methods on the FewShotWOZ data in both BLEU and Slot Error Rate. We further confirm improved results on the FewShotSGD data and provide comprehensive analysis results on key components of our system. Our code and data are available at https://github.com/XinnuoXu/AugNLG.
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks. However, these models are typically fine-tuned on hundreds of thousands of data points, an infeasible re quirement when applying summarization to new, niche domains. In this work, we introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner. WikiTransfer fine-tunes pretrained models on pseudo-summaries, produced from generic Wikipedia data, which contain characteristics of the target dataset, such as the length and level of abstraction of the desired summaries. WikiTransfer models achieve state-of-the-art, zero-shot abstractive summarization performance on the CNN-DailyMail dataset and demonstrate the effectiveness of our approach on three additional diverse datasets. These models are more robust to noisy data and also achieve better or comparable few-shot performance using 10 and 100 training examples when compared to few-shot transfer from other summarization datasets. To further boost performance, we employ data augmentation via round-trip translation as well as introduce a regularization term for improved few-shot transfer. To understand the role of dataset aspects in transfer performance and the quality of the resulting output summaries, we further study the effect of the components of our unsupervised fine-tuning data and analyze few-shot performance using both automatic and human evaluation.
Few-shot slot tagging is an emerging research topic in the field of Natural Language Understanding (NLU). With sufficient annotated data from source domains, the key challenge is how to train and adapt the model to another target domain which only ha s few labels. Conventional few-shot approaches use all the data from the source domains without considering inter-domain relations and implicitly assume each sample in the domain contributes equally. However, our experiments show that the data distribution bias among different domains will significantly affect the adaption performance. Moreover, transferring knowledge from dissimilar domains will even introduce some extra noises so that affect the performance of models. To tackle this problem, we propose an effective similarity-based method to select data from the source domains. In addition, we propose a Shared-Private Network (SP-Net) for the few-shot slot tagging task. The words from the same class would have some shared features. We extract those shared features from the limited annotated data on the target domain and merge them together as the label embedding to help us predict other unlabelled data on the target domain. The experiment shows that our method outperforms the state-of-the-art approaches with fewer source data. The result also proves that some training data from dissimilar sources are redundant and even negative for the adaption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا