ﻻ يوجد ملخص باللغة العربية
An ultrabroadband upconversion device is demonstrated by direct tandem integration of a p-type GaAs/AlxGa1-xAs ratchet photodetector (RP) with a GaAs double heterojunction LED (DH-LED) using the molecular beam epitaxy (MBE). An ultrabroadband photoresponse from terahertz (THz) to near infrared (NIR) region (4-200 THz) was realized that covers a much wider frequency range com-pared with the existing upconversion devices. Broadband IR/THz radiation from 1000 K blackbody is successfully upconverted into NIR photons which can be detected by commercial Si-based device. The normal incidence absorption of the RP simplifies the structure of the RP-LED device and make it more compact compared with the inter-subband transition based upconverters. In addition to the up-conversion function, the proposed upconverter is also tested as photovoltaic detectors in the infrared region (15-200 THz) without an applied bias voltage due to the ratchet effect.
High performance Terahertz (THz) photodetector has drawn wide attention and got great improvement due to its significant application in biomedical, astrophysics, nondestructive inspection, 6th generation communication system as well as national secur
The intermediate band solar cell (IBSC) and quantum ratchet solar cell (QRSC) have the potential to surpass the efficiency of standard single-junction solar cells by allowing sub-gap photon absorption through states deep inside the band gap. High eff
Coupling phase-stable single-cycle terahertz (THz) pulses to scanning tunneling microscope (STM) junctions enables spatio-temporal imaging with femtosecond temporal and r{A}ngstrom spatial resolution. The time resolution achieved in such THz-gated ST
In this paper, a wideband and low-scattering metasurface in terahertz (THz) is introduced. The proposed coding metasurface is composed of four different graphene square patches in one layer, which has a distinct bias voltage. By optimizing the chemic
Two-photon photopolymerization delivers prints without support structures and minimizes layering artifacts in a broad range of materials. This volumetric printing approach scans a focused light source throughout the entire volume of a resin vat and t