ترغب بنشر مسار تعليمي؟ اضغط هنا

HypoGen: Hyperbole Generation with Commonsense and Counterfactual Knowledge

102   0   0.0 ( 0 )
 نشر من قبل Yufei Tian
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A hyperbole is an intentional and creative exaggeration not to be taken literally. Despite its ubiquity in daily life, the computational explorations of hyperboles are scarce. In this paper, we tackle the under-explored and challenging task: sentence-level hyperbole generation. We start with a representative syntactic pattern for intensification and systematically study the semantic (commonsense and counterfactual) relationships between each component in such hyperboles. Next, we leverage the COMeT and reverse COMeT models to do commonsense and counterfactual inference. We then generate multiple hyperbole candidates based on our findings from the pattern, and train neural classifiers to rank and select high-quality hyperboles. Automatic and human evaluations show that our generation method is able to generate hyperboles creatively with high success rate and intensity scores.



قيم البحث

اقرأ أيضاً

We propose an unsupervised approach for sarcasm generation based on a non-sarcastic input sentence. Our method employs a retrieve-and-edit framework to instantiate two major characteristics of sarcasm: reversal of valence and semantic incongruity wit h the context which could include shared commonsense or world knowledge between the speaker and the listener. While prior works on sarcasm generation predominantly focus on context incongruity, we show that combining valence reversal and semantic incongruity based on the commonsense knowledge generates sarcasm of higher quality. Human evaluation shows that our system generates sarcasm better than human annotators 34% of the time, and better than a reinforced hybrid baseline 90% of the time.
82 - Xin Jia , Hao Wang , Dawei Yin 2021
Question generation (QG) is to generate natural and grammatical questions that can be answered by a specific answer for a given context. Previous sequence-to-sequence models suffer from a problem that asking high-quality questions requires commonsens e knowledge as backgrounds, which in most cases can not be learned directly from training data, resulting in unsatisfactory questions deprived of knowledge. In this paper, we propose a multi-task learning framework to introduce commonsense knowledge into question generation process. We first retrieve relevant commonsense knowledge triples from mature databases and select triples with the conversion information from source context to question. Based on these informative knowledge triples, we design two auxiliary tasks to incorporate commonsense knowledge into the main QG model, where one task is Concept Relation Classification and the other is Tail Concept Generation. Experimental results on SQuAD show that our proposed methods are able to noticeably improve the QG performance on both automatic and human evaluation metrics, demonstrating that incorporating external commonsense knowledge with multi-task learning can help the model generate human-like and high-quality questions.
There is an increasing interest in the use of mathematical word problem (MWP) generation in educational assessment. Different from standard natural question generation, MWP generation needs to maintain the underlying mathematical operations between q uantities and variables, while at the same time ensuring the relevance between the output and the given topic. To address above problem, we develop an end-to-end neural model to generate diverse MWPs in real-world scenarios from commonsense knowledge graph and equations. The proposed model (1) learns both representations from edge-enhanced Levi graphs of symbolic equations and commonsense knowledge; (2) automatically fuses equation and commonsense knowledge information via a self-planning module when generating the MWPs. Experiments on an educational gold-standard set and a large-scale generated MWP set show that our approach is superior on the MWP generation task, and it outperforms the SOTA models in terms of both automatic evaluation metrics, i.e., BLEU-4, ROUGE-L, Self-BLEU, and human evaluation metrics, i.e., equation relevance, topic relevance, and language coherence. To encourage reproducible results, we make our code and MWP dataset public available at url{https://github.com/tal-ai/MaKE_EMNLP2021}.
In this paper, we present CogNet, a knowledge base (KB) dedicated to integrating three types of knowledge: (1) linguistic knowledge from FrameNet, which schematically describes situations, objects and events. (2) world knowledge from YAGO, Freebase, DBpedia and Wikidata, which provides explicit knowledge about specific instances. (3) commonsense knowledge from ConceptNet, which describes implicit general facts. To model these different types of knowledge consistently, we introduce a three-level unified frame-styled representation architecture. To integrate free-form commonsense knowledge with other structured knowledge, we propose a strategy that combines automated labeling and crowdsourced annotation. At present, CogNet integrates 1,000+ semantic frames from linguistic KBs, 20,000,000+ frame instances from world KBs, as well as 90,000+ commonsense assertions from commonsense KBs. All these data can be easily queried and explored on our online platform, and free to download in RDF format for utilization under a CC-BY-SA 4.0 license. The demo and data are available at http://cognet.top/.
Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future. However, simultaneous incorpora tion of past and future contexts using generative language models (LMs) can be challenging, as they are trained either to condition only on the past context or to perform narrowly scoped text-infilling. In this paper, we propose DeLorean, a new unsupervised decoding algorithm that can flexibly incorporate both the past and future contexts using only off-the-shelf, left-to-right language models and no supervision. The key intuition of our algorithm is incorporating the future through back-propagation, during which, we only update the internal representation of the output while fixing the model parameters. By alternating between forward and backward propagation, DeLorean can decode the output representation that reflects both the left and right contexts. We demonstrate that our approach is general and applicable to two nonmonotonic reasoning tasks: abductive text generation and counterfactual story revision, where DeLorean outperforms a range of unsupervised and some supervised methods, based on automatic and human evaluation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا